Skip to main content
Log in

Moonshine for all finite groups

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

In recent literature, moonshine has been explored for some groups beyond the Monster, for example the sporadic O’Nan and Thompson groups. This collection of examples may suggest that moonshine is a rare phenomenon, but a fundamental and largely unexplored question is how general the correspondence is between modular forms and finite groups. For every finite group G, we give constructions of infinitely many graded infinite-dimensional \(\mathbb {C}[G]\)-modules where the McKay–Thompson series for a conjugacy class [g] is a weakly holomorphic modular function properly on \(\varGamma _0({{\mathrm{ord}}}(g))\). As there are only finitely many normalized Hauptmoduln, groups whose McKay–Thompson series are normalized Hauptmoduln are rare, but not as rare as one might naively expect. We give bounds on the powers of primes dividing the order of groups which have normalized Hauptmoduln of level \({{\mathrm{ord}}}(g)\) as the graded trace functions for any conjugacy class [g], and completely classify the finite abelian groups with this property. In particular, these include \((\mathbb {Z}/ 5 \mathbb {Z})^5\) and \((\mathbb {Z}/ 7 \mathbb {Z})^4\), which are not subgroups of the Monster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. At this stage, the existence of \(\mathbb {M}\) was still entirely conjectural.

  2. We note that the levels of modular functions in \(V^\natural \) are technically \(h{{\mathrm{ord}}}(g)\) where \(h|(12,{{\mathrm{ord}}}(g))\). Our proof of Theorem 1.1 may be easily altered to handle other levels, so for simplicity we only prove it for the case when the graded trace of g is strictly on level \({{\mathrm{ord}}}(g)\).

  3. It is necessary to consider congruences of this form because there will always be congruences among \(T_1,T_2,\ldots ,T_{25}\) modulo \(p^N\) given by multiplying a congruence modulo a lower power of p by the appropriate power of p; however, mandating that the first coefficient is 1 excludes such cases.

  4. Code available at https://github.com/nvafa/moonshine-congruences.

References

  1. Beneish, L., Larson, H.: Traces of singular values of Hauptmoduln. arXiv:1407.4479 [math.NT]

  2. Borcherds, R.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Natl. Acad. Sci. U.S.A. 83(10), 3068–3071 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borcherds, R.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. Colloquium Publications, Amer. Math. Soc., Ann Arbor (2017)

    MATH  Google Scholar 

  5. Bringmann, K., Mahlburg, K.: Asymptotic formulas for stacks and unimodal sequences. J. Comb. Theory A(126), 194–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carnahan, S.: Generalized moonshine I: genus zero functions. Algebra Number Theory 4(6), 649–679 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carnahan, S.: Generalized Moonshine IV: monstrous Lie algebras (2012). arXiv:1208.6254

  8. Cheng, M., Duncan, J., Harvey, J.: Umbral Moonshine, Commun. Number Theory Phys. 8(2), 101–242 (2014)

  9. Cheng, M., Duncan, J., Harvey, J.: Umbral moonshine and the Niemeier lattices. Res. Math. Sci. 1(1), 3 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cummins, C.J., Norton, S.P.: Rational Hauptmodul are replicable. Can. J. Math. 47, 1201–1218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cotron, T., Dicks, R., Fleming, S.: Asymptotics and congruences for partition functions which arise from finitary permutation groups. arXiv:1606.09074 [math.NT] (2016)

  13. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dummit, D.S., Foote, R.M.: Abstract Algebra. Wiley, New York (2004)

    MATH  Google Scholar 

  15. Duncan, J.F.R., Griffin, M., Ono, K.: Moonshine. Res. Math. Sci. 2, A11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duncan, J.F.R., Griffin, M., Ono, K.: Proof of the umbral moonshine conjecture. Res. Math. Sci. 2, A26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duncan, J.F.R., Frenkel, I.: Rademacher sums, moonshine and gravity. Commun. Number Theory Phys. 5, 849–976 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duncan, J.F.R., Mertens, M.H., Ono, K.: O’Nan moonshine and arithmetic. arXiv:1702.03516

  19. Eguchi, T., Ooguri, H., Tachikawa, Y.: Notes on the K3 surface and the Mathieu group M24. Exper. Math. 20, 91–96 (2011)

    Article  MATH  Google Scholar 

  20. Frenkel, I., Lepowsky, J., Meurman, A.: A natural representation of the Fischer–Griess Monster with the modular function J as character. Proc. Natl. Acad. Sci. U.S.A. 81(10), 3256–3260 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frenkel, I., Lepowsky, J., Meurman, A.: A moonshine module for the Monster. In: Lepowsky, J., Mandelstam, S., Singer, I.M. (eds.) Vertex Operators in Mathematics and Physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 3, pp. 231–273. Springer, New York (1985)

  22. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134. Academic Press Inc., Boston (1988)

    MATH  Google Scholar 

  23. Laforgia, A., Natalini, P.: Some inequalities for modified Bessel functions. J. Inequal. Appl. Art. ID 253035, 10 pp (2010)

  24. Gannon, T.: Much ado about Matthieu (2012)

  25. Ingham, A.E.: A Tauberian theorem for partitions. Ann. Math. 42(5), 1075–1090 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iwaniec, H.: Topics in Classical Automorphic Forms, Grad. Studies in Math., vol. 17. AMS, Providence (1997)

    MATH  Google Scholar 

  27. Lam, C.H., Lin, X.: A holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra \(F_{4,6}A_{2,2}\). arXiv:1612.08123v1 [math.QA] (2016)

  28. Larson, H.: Coefficients of Mckay–Thompson series and distributions of the moonshine module. Proc. Am. Math. Soc. 144(10), 4183–4197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mason, G.: Finite groups and modular functions. In: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proceedings of Symposium on Pure Mathematics, vol. 47, Amer. Math. Soc., Providence, RI, 1987, With an appendix by S. P. Norton, pp. 181–210

  30. McKay, J., Sebbar, A.: Replicable functions: an introduction. In: Cartier, P.E., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics and Geometry II, pp. 373–386. Springer, Berlin (2007)

  31. Norton, S.P.: Generalized moonshine. Proc. Symp. Pure Math 47, 208–209 (1987)

    Google Scholar 

  32. Ogg, A.: Automorphisms de courbes modulaires. Sem. Delange-Pisot-Poitou, Théorie des nombres, 16, no. 1, exp. no. 7, 1–8 (1974–1975)

  33. Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, 102, Amer. Math. Soc., Providence (2004)

  34. Queen, L.: Modular functions arising from some finite groups. Math. Comput. 37(156), 547–580 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smith, S.D.: On the head characters of the Monster simple group. In: McKay, J. (ed.) Finite Groups—Coming of Age (Montreal, Que, 1982), Contemp. Math., vol. 45, pp. 303–313. Amer. Math. Soc., Providence (1985)

  36. Stein, W.A., et al.: Sage Mathematics Software (Version 7.6). The Sage Development Team (2017). http://www.sagemath.org

  37. Sturm, J.: On the congruence of modular forms. In: Alladi, K. (ed.) Number Theory (New York, 1984–1985), Lecture Notes in Math., vol. 1240, pp. 275–280. Springer, Berlin (1987)

  38. Thompson, J.G.: Finite groups and modular functions. Bull. Lond. Math. Soc. 11(3), 347–351 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thompson, J.G.: Some numerology between the Fischer–Griess Monster and the elliptic modular function. Bull. Lond. Math. Soc. 11(3), 352–353 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. van Ekeren, J., Möller, S., Scheithauer, N.R.: Construction and classification of holomorphic vertex operator algebras. arXiv:1507.08142v2 [math.RT] (2015)

  41. Wilson, R.A.: The odd-local subgroups of the Monster. J. Austral. Math. Soc. Ser. A 44, 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wilson, R.A.: Personal communication (June 2017)

  43. Zagier, D.: Traces of Singular Moduli, Motives, Polylogarithms and Hodge Theory, Lecture Series 3, pp. 209–244. International Press, Somerville (2002)

    Google Scholar 

  44. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ken Ono and John Duncan for advising this project and for their many helpful conversations and suggestions. We also thank Hannah Larson for helpful conversations and edits, and Robert Wilson for answering our question about subgroups of the Monster. Finally, we thank Emory University, Princeton University, and the NSF (via Grant DMS-1557690) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Van Peski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Hauptmodul congruences

Appendix: Hauptmodul congruences

Here, we list the maximal moduli of congruences obtained to prove Theorem 1.3. Note that here \(T_N\) denotes the normalized Hauptmodul for \(X_0(N)\).

$$\begin{aligned} 0&\equiv T_1 - T_2 \qquad \qquad \,\,\,\qquad \pmod {2^{16}}\\&\equiv T_1 - T_4 \qquad \qquad \,\,\,\qquad \pmod {2^8}\\&\equiv T_1 - T_8\qquad \qquad \,\,\, \qquad \pmod {2^4}\\&\equiv T_1 - T_{16}\qquad \qquad \,\,\,\qquad \pmod {2^2}\\&\equiv T_1 - T_3 \qquad \qquad \,\,\,\qquad \pmod {3^9}\\&\equiv T_1 - T_9 \qquad \qquad \,\,\,\qquad \pmod {3^3}\\&\equiv T_1 - T_5 \qquad \qquad \,\,\,\qquad \pmod {5^5}\\&\equiv T_1 - T_{25} \qquad \qquad \qquad \,\,\, \pmod {5^1}\\&\equiv T_1 - T_7 \qquad \qquad \quad \qquad \pmod {7^4}\\&\equiv T_1 - T_{13} \qquad \qquad \,\,\,\qquad \pmod {13^2}\\&\equiv T_1 - T_2 - T_3 + T_6 \qquad \pmod {2^4 3^3}\\&\equiv T_1 - T_4 - T_3 + T_{12} \qquad \pmod {2^2 3^2}\\&\equiv T_1 - T_2 - T_9 + T_{18}\qquad \pmod {2^2 3^1}\\&\equiv T_1 - T_2 - T_5 + T_{10} \qquad \pmod {2^3 5^2} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeHority, S., Gonzalez, X., Vafa, N. et al. Moonshine for all finite groups. Res Math Sci 5, 14 (2018). https://doi.org/10.1007/s40687-018-0133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0133-5

Keywords

Mathematics Subject Classification

Navigation