Skip to main content
Log in

On the Colmez conjecture for non-abelian CM fields

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

The Colmez conjecture relates the Faltings height of an abelian variety with complex multiplication by the ring of integers of a CM field E to logarithmic derivatives of Artin L-functions at \(s=0\). In this paper, we prove that if F is any fixed totally real number field of degree \([F:\mathbb {Q}] \ge 3\), then there are infinitely many effective, “positive density” sets of CM extensions E / F such that \(E/\mathbb {Q}\) is non-abelian and the Colmez conjecture is true for E. Moreover, these CM extensions are explicitly constructed to be ramified at arbitrary prescribed sets of prime ideals of F. We also prove that the Colmez conjecture is true for a generic class of non-abelian CM fields called Weyl CM fields, and use this to develop an arithmetic statistics approach to the Colmez conjecture based on counting CM fields of fixed degree and bounded discriminant. We illustrate these results by evaluating the Faltings height of the Jacobian of a genus 2 hyperelliptic curve with complex multiplication by a non-abelian quartic CM field in terms of the Barnes double Gamma function at algebraic arguments. This can be viewed as an explicit non-abelian Chowla–Selberg formula. Our results rely crucially on an averaged version of the Colmez conjecture which was recently proved independently by Andreatta–Goren–Howard–Madapusi Pera and Yuan–Zhang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The shaded parallelogram in Fig. 2 is the subset of the Shintani cone \(\mathcal {C}(\varepsilon )\) determined by the inequalities \(0 < t_1 \le 1\) and \(0 \le t_2 < 1\), which correspond to the inequalities appearing in the definition of \(\mathcal {R}\left( \varepsilon , \mathfrak {D}_{E/F}^{-1}\right) \).

References

  1. Andreatta, F., Goren, E.Z., Howard, B., Madapusi Pera, K.: Faltings heights of abelian varieties with complex multiplication. Ann. Math. 187, 391–531 (2018)

  2. Baily, A.M.: On the density of discriminants of quartic fields. J. Reine Angew. Math. 315, 190–210 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Barnes, E.W.: The theory of the double Gamma function. Philos. Trans. R. Soc. Lond. A 196, 265–387 (1901)

    Article  MATH  Google Scholar 

  4. Barquero-Sanchez, A., Masri, R.: The Chowla–Selberg formula for CM abelian surfaces (submitted)

  5. Barquero-Sanchez, A., Masri, R.: The Chowla-Selberg formula for CM abelian varieties (in preparation)

  6. Barquero-Sanchez, A., Masri, R., Thorne, F.: The distribution of \(G\)-Weyl CM fields and the Colmez conjecture. arXiv:1708.00044v2 [math.NT]

  7. Bhargava, M.: Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Int. Math. Res. Not. 17, Art. ID rnm052, 20pp. (2007)

  8. Bouyer, F., Streng, M.: Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math. 18(1), 507–538 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chai, C., Oort, F.: Abelian varieties isogenous to a Jacobian. Ann. Math. 176(1), 589–635 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Childress, N.: Class Field Theory. Springer, New York (2009)

    Book  MATH  Google Scholar 

  11. Chowla, S., Selberg, A.: On Epstein’s zeta-function. J. Reine Angew. Math. 227, 86–110 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Cohen, H.: Enumerating quartic dihedral extensions of \({\mathbb{Q}}\) with signatures. Ann. Inst. Fourier (Grenoble) 53(2), 339–377 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, H., Diaz y Diaz, F., Olivier, M.: Enumerating quartic dihedral extensions of \({\mathbb{Q}}\). Compos. Math. 133(1), 65–93 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, H., Diaz y Diaz, F., Olivier, M.: Counting cyclic quartic extensions of a number field. J. Theor. Nombres Bordx. 17(2), 475–510 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, H., Diaz y Diaz, F., Olivier, M.: Counting discriminants of number fields. J. Theor. Nombres Bordx. 18(3), 573–593 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colmez, P.: Périodes des variétés abéliennes à multiplication complexe. (French) [Periods of abelian varieties with complex multiplication] Ann. Math. 138, 625–683 (1993)

  17. Colmez, P.: Sur la hauteur de Faltings des variétés abéliennes à multiplication complexe. (French) [On the Faltings height of abelian varieties with complex multiplication] Compositio Math. 111(3), 359–368 (1998)

  18. Deligne, P.: Preuve des conjectures de Tate et de Shafarevitch (d’après G. Faltings) (French) [Proof of the Tate and Shafarevich conjectures (after G. Faltings)] Seminar Bourbaki, vol. 1983/84. Astrisque No. 121–122, 25–41 (1985)

  19. Fröhlich, A., Taylor, M.J.: Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, vol. 27. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  20. Gallagher, P.X.: The large sieve and probabilistic Galois theory. In: Analytic Number Theory (Proceedings of Symposia Pure Mathematics, vol. XXIV, St. Louis Univ., St. Louis, Mo, 1972, pp. 91–101). Amer. Math. Soc., Providence (1973)

  21. Greaves, A., Odoni, R.W.K.: Weil-numbers and CM-fields. I. J. Reine Angew. Math. 391, 198–212 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Gross, B.H.: Arithmetic on Elliptic Curves with Complex Multiplication. With an Appendix by B. Mazur. Lecture Notes in Mathematics, vol. 776. Springer, Berlin (1980)

  23. Heilbronn, H.: Zeta-functions and L-functions. In: Algebraic Number Theory (Proceedings of Instructional Conference on Brighton, 1965), Thompson, Washington, DC, pp. 204–230 (1967)

  24. Janusz, G.J.: Algebraic Number Fields. Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (1996)

    Google Scholar 

  25. Kato, K., Kurokawa, N., Saito, T.: Number Theory. 2. Introduction to Class Field Theory. Translated from the 1998 Japanese original by Masato Kuwata and Katsumi Nomizu. Translations of Mathematical Monographs, vol. 240. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence (2011)

  26. Koch, H.: Number Theory. Algebraic Numbers and Functions. Translated from the 1997 German original by David Kramer. Graduate Studies in Mathematics, vol. 24. American Mathematical Society, Providence (2000)

  27. Kontsevich, M., Zagier, D.: Periods, Mathematics Unlimited—2001 and Beyond, pp. 771–808. Springer, Berlin (2001)

    MATH  Google Scholar 

  28. Kowalski, E.: Weil numbers generated by other Weil numbers and torsion fields of abelian varieties. J. Lond. Math. Soc. 74(2), 273–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)

    Google Scholar 

  30. Mäki, S.: On the density of abelian number fields. Thesis, Helsinki (1985)

  31. Malle, G.: On the distribution of Galois groups. J. Number Theory 92, 315–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Malle, G.: On the distribution of Galois groups II. Exp. Math. 13, 129–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Milne, J.S.: Complex Multiplication (v0.00). http://www.jmilne.org/math/CourseNotes/cm.html

  34. Milne, J.S.: Abelian Varieties (v2.00). http://www.jmilne.org/math/CourseNotes/av.html

  35. Morandi, P.: Field and Galois Theory. Graduate Texts in Mathematics, vol. 167. Springer, New York (1996)

    Book  Google Scholar 

  36. Neukirch, J.: Algebraic number theory. Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by G. Harder. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Springer, Berlin (1999)

  37. Obus, A.: On Colmez’s product formula for periods of CM-abelian varieties. Math. Ann. 356, 401–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oort, F.: CM Jacobians. In: Notes from a Talk at the Conference Galois Covers and Deformations, Bordeaux, June 25–29, (2012). http://www.staff.science.uu.nl/~oort0109/Bord2-VI-12.pdf

  39. Ribenboim, P.: Classical Theory of Algebraic Numbers. Springer, New York (2001)

    Book  MATH  Google Scholar 

  40. Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math. 85, 58–159 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. Math. 91, 144–222 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions (Reprint of the 1971 Original. Mathematical Society of Japan, Tokyo, vol. 11, Kanô Memorial Lectures) vol. 1. Princeton University Press, Princeton (1994)

  43. Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton Mathematical Series, vol. 46. Princeton University Press, Princeton (1998)

    Book  MATH  Google Scholar 

  44. Shintani, T.: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1), 167–199 (1977)

    MathSciNet  MATH  Google Scholar 

  45. Silverman, J.H.: Heights and Elliptic Curves. Arithmetic Geometry (Storrs, Conn., 1984), pp. 253–265. Springer, New York (1986)

    Book  Google Scholar 

  46. Tate, J.: Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda) (French) [Isogeny Classes of Abelian Varieties over Finite Fields (after T. Honda)] Séminaire Bourbaki, vol. 1968/69, Exposés pp. 347–363, Exp. No. 352, 95–110, Lecture Notes in Mathematics, vol. 175, Springer, Berlin (1971)

  47. Tsimerman, J.: The André-Oort Conjecture for \(\cal{A}_g\). Ann. Math. 187, 379–390 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Weiss, E.: Algebraic Number Theory (Reprint of the 1963 Original). Dover Publications, Inc, Mineola (1998)

  49. Wingberg, K.: Representations of locally profinite groups. In: Representation Theory and Number Theory in Connection with the Local Langlands Conjecture (Augsburg, 1985), vol. 86, Contemporary Mathematics, American Mathematical Society, Providence, pp. 117–125 (1989)

  50. Wood, M.: Asymptotics for number fields and class groups. In: Women in Numbers 3: Directions in number theory, 291–339, Assoc. Women Math. Ser., 3, Springer, [Cham] (2016)

  51. Yang, T.H.: An arithmetic intersection formula on Hilbert modular surfaces. Am. J. Math. 132, 1275–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yang, T.H.: The Chowla–Selberg formula and the Colmez conjecture. Can. J. Math. 62, 456–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, T.H.: Arithmetic intersection on a Hilbert modular surface and the Faltings height. Asian J. Math. 17, 335–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, T.H., Yin, H.: CM fields of dihedral type and Colmez conjecture. manuscripta math. (2017). https://doi.org/10.1007/s00229-017-0966-z

  55. Yuan, S., Zhang, S.: On the Averaged Colmez Conjecture. Ann. Math. 187, 533–638 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author's contributions

Acknowlegements

The authors were partially supported by the NSF grants DMS-1162535 and DMS-1460766 during the preparation of this work. A. B-S. was also partially supported by the University of Costa Rica.

Ethics approval and consent to participate

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riad Masri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barquero-Sanchez, A., Masri, R. On the Colmez conjecture for non-abelian CM fields. Res Math Sci 5, 10 (2018). https://doi.org/10.1007/s40687-018-0119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-018-0119-3

Navigation