Skip to main content
Log in

Abstract

Fouling in airborne and aquatic environments greatly deteriorates the performance and reliability of various devices. Biological species in nature possess distinctive surface structures that prevent the accumulation of foulants for survival. In this review, we discussed the mechanism that underlies surface fouling and the design principles of anti-fouling surfaces in both air and water environments. Second, we reviewed nature-inspired, anti-fouling surfaces that effectively reduced the driving forces of fouling phenomena in air and water environments. Specifically, surface with anti-dust properties in air environments can be achieved through controlling van der Waals, electrostatic, or capillary forces, while exposure to foulants in water environments can be effectively minimized through the formation of air, lubricant, or hydration barrier layers on surfaces. Third, we introduced studies on multifunctional, anti-fouling surfaces tailored to specific, target applications. Finally, future directions for the successful deployment of nature-inspired, anti-fouling surfaces in diverse applications are discussed. This review describes efforts to realize anti-fouling surfaces and enhance the performance of devices with reduced maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Walz, K. A., Hoege, T. D., Duensing, J. W., Zeltner, W. A., & Anderson, M. A. (2023). Field tests of a self-sintering, anti-soiling, self-cleaning, nanoporous metal oxide, transparent thin film coating for solar photovoltaic modules. Solar Energy Materials and Solar Cells, 262, 112560.

    Article  Google Scholar 

  2. Mathew, D., Prasanth Ram, J., & Kim, Y.-J. (2023). Unveiling the distorted irradiation effect (Shade) in photovoltaic (PV) power conversion – A critical review on Causes, Types, and its minimization methods. Solar Energy, 266, 112141.

    Article  Google Scholar 

  3. Rashid, M., Yousif, M., Rashid, Z., Muhammad, A., Altaf, M., & Mustafa, A. (2023). Effect of dust accumulation on the performance of photovoltaic modules for different climate regions. Heliyon, 9, e23069.

    Article  Google Scholar 

  4. Jung, Y., Oh, J., Han, U., & Lee, H. (2022). A comprehensive review of thermal potential and heat utilization for water source heat pump systems. Energy and Buildings, 266, 112124.

    Article  Google Scholar 

  5. Kim, H. S., Kim, J., Sohn, S., Seo, J., Cho, Y., & Park, H. J. (2024). Experimental and numerical investigation on the fouling of a river water source heat pump system. Applied Thermal Engineering, 245, 122784.

    Article  Google Scholar 

  6. Kapustenko, P., Klemeš, J. J., & Arsenyeva, O. (2023). Plate heat exchangers fouling mitigation effects in heating of water solutions: A review. Renewable and Sustainable Energy Reviews, 179, 113283.

    Article  Google Scholar 

  7. Lü, Z., Ding, G., Liu, M., Yu, S., & Gao, C. (2023). Improved separation performance, anti-fouling property and durability of polyamide-based RO membrane by constructing a polyvinyl alcohol/polyquaternium-10 surface coating layer. Desalination, 564, 116755.

    Article  Google Scholar 

  8. Son, H. W., Yang, J. B., & Kim, D. R. (2023). Investigation of water separation capabilities of demisters integrated with microstructured surfaces. Desalination, 568, 117030.

    Article  Google Scholar 

  9. Heu, C. S., Jang, H., Jeon, J., Lee, K.-S., & Rip Kim, D. (2020). Recent progress on developing anti-frosting and anti-fouling functional surfaces for air source heat pumps. Energy and Buildings, 223, 110139.

    Article  Google Scholar 

  10. Mauro, A. W., Pelella, F., & Viscito, L. (2023). Performance degradation of air source heat pumps under faulty conditions. Case Studies in Thermal Engineering, 45, 103010.

    Article  Google Scholar 

  11. Ilse, K., Micheli, L., Figgis, B. W., Lange, K., Daßler, D., Hanifi, H., Wolfertstetter, F., Naumann, V., Hagendorf, C., Gottschalg, R., & Bagdahn, J. (2019). Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation. Joule, 3, 2303–2321.

    Article  Google Scholar 

  12. Quan, Y.-Y., & Zhang, L.-Z. (2017). Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass. Solar Energy Materials and Solar Cells, 160, 382–389.

    Article  Google Scholar 

  13. Zuo, K., Zhang, X., Huang, X., Oliveira, E. F., Guo, H., Zhai, T., Wang, W., Alvarez, P. J. J., Elimelech, M., Ajayan, P. M., Lou, J., & Li, Q. (2022). Ultrahigh resistance of hexagonal boron nitride to mineral scale formation. Nature Communications, 13, 4523.

    Article  Google Scholar 

  14. Lee, H., Yang, J. B., & Kim, D. R. (2024). Anti-frosting characteristics of superhydrophobic-hydrophilic wettability switchable surfaces. International Journal of Heat and Mass Transfer, 221, 125035.

    Article  Google Scholar 

  15. Yang, J. B., Jeon, J., Lee, H., Heu, C. S., & Kim, D. R. (2022). Frosting and defrosting characteristics of multi-layer coated aluminum surfaces. International Communications in Heat and Mass Transfer, 139, 106460.

    Article  Google Scholar 

  16. Li, C. G., Liu, C., Xu, W. H., Shan, M. G., & Wu, H. X. (2022). Formation mechanisms and supervisory prediction of scaling in water supply pipelines: A review. Water Research, 222, 118922.

    Article  Google Scholar 

  17. Klijnstra, J., Zhang, X., van der Putten, S., & Röckmann, C. (2017). Technical Risks of Offshore Structures. Aquaculture Perspective of Multi-Use Sites in the Open Ocean: the untapped potential for marine resources in the Anthropocene (pp. 115–127). Springer International Publishing.

    Chapter  Google Scholar 

  18. Men, Y., Li, Z., Zhu, L., Wang, X., Cheng, S., & Lyu, Y. (2023). New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. Science of the Total Environment, 869, 161775.

    Article  Google Scholar 

  19. Chen, L., Duan, Y., Cui, M., Huang, R., Su, R., Qi, W., & He, Z. (2021). Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Science of the Total Environment, 766, 144469.

    Article  Google Scholar 

  20. Khani, M., Hansen, M. F., Rasekh, B., Nosrati, M., Burmølle, M., Ghasemipanah, K., & Zamir, S. M. (2024). Optimizing cleaning strategies for biofouling in reverse osmosis membrane systems: A comparative study using a self-formed instrument. Journal of Industrial and Engineering Chemistry, 132, 448–460.

    Article  Google Scholar 

  21. Kawamoto, H. (2019). Electrostatic cleaning equipment for dust removal from soiled solar panels. Journal of Electrostatics, 98, 11–16.

    Article  Google Scholar 

  22. Ma, Y., Gou, T., Feng, C., Li, J., Li, Y., Huang, J., Li, R., Zhang, Z., & Gao, X. (2021). Facile fabrication of biomimetic films with the microdome and tapered nanonipple hierarchical structure possessing high haze, high transmittance, anti-fouling and moisture self-cleaning functions. Chemical Engineering Journal, 404, 127101.

    Article  Google Scholar 

  23. Huang, Z., Cai, C., Kuai, L., Li, T., Huttula, M., & Cao, W. (2018). Leaf-structure patterning for antireflective and self-cleaning surfaces on Si-based solar cells. Solar Energy, 159, 733–741.

    Article  Google Scholar 

  24. Zhang, H., Wang, F., & Guo, Z. (2024). The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Advances in Colloid and Interface Science, 325, 103097.

    Article  Google Scholar 

  25. Peppou-Chapman, S., Hong, J. K., Waterhouse, A., & Neto, C. (2020). Life and death of liquid-infused surfaces: A review on the choice, analysis and fate of the infused liquid layer. Chemical Society Reviews, 49, 3688–3715.

    Article  Google Scholar 

  26. Zhang, T., Wang, Y., Zhang, F., Chen, X., Hu, G., Meng, J., & Wang, S. (2018). Bio-inspired superhydrophilic coatings with high anti-adhesion against mineral scales. NPG Asia Materials, 10, e471–e471.

    Article  Google Scholar 

  27. Salamah, T., Ramahi, A., Alamara, K., Juaidi, A., Abdallah, R., Abdelkareem, M. A., Amer, E. C., & Olabi, A. G. (2022). Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Science of the Total Environment, 827, 154050.

    Article  Google Scholar 

  28. Chanchangi, Y. N., Ghosh, A., Sundaram, S., & Mallick, T. K. (2020). An analytical indoor experimental study on the effect of soiling on PV, focusing on dust properties and PV surface material. Solar Energy, 203, 46–68.

    Article  Google Scholar 

  29. Ilse, K. K., Figgis, B. W., Naumann, V., Hagendorf, C., & Bagdahn, J. (2018). Fundamentals of soiling processes on photovoltaic modules. Renewable and Sustainable Energy Reviews, 98, 239–254.

    Article  Google Scholar 

  30. Figgis, B., Ennaoui, A., Ahzi, S., & Rémond, Y. (2017). Review of PV soiling particle mechanics in desert environments. Renewable and Sustainable Energy Reviews, 76, 872–881.

    Article  Google Scholar 

  31. Hossain, M. I., Ali, A., Bermudez Benito, V., Figgis, B., & Aissa, B. (2022). Anti-Soiling Coatings for Enhancement of PV Panel Performance in Desert Environment: A Critical Review and Market Overview. Materials (Basel), 15, 7139.

    Article  Google Scholar 

  32. Fares, E., Buffiere, M., Figgis, B., Haik, Y., & Isaifan, R. J. (2021). Soiling of photovoltaic panels in the Gulf Cooperation Council countries and mitigation strategies. Solar Energy Materials and Solar Cells, 231, 111303.

    Article  Google Scholar 

  33. Isaifan, R. J., Johnson, D., Ackermann, L., Figgis, B., & Ayoub, M. (2019). Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Solar Energy Materials and Solar Cells, 191, 413–421.

    Article  Google Scholar 

  34. Wang, L., Liu, M., Wu, Y., & Zheng, H. (2022). Progress in Studies of Surface Nanotextures and Coatings with Nanomaterials on Glass for Anti-Dust Functionality. Nanomaterials (Basel), 12, 3677.

    Article  Google Scholar 

  35. Wang, X., Wang, W., Shao, H., Chao, S., Zhang, H., Tang, C., Li, X., Zhu, Y., Zhang, J., Zhang, X., & Lu, Y. (2022). Lunar Dust-Mitigation Behavior of Aluminum Surfaces with Multiscale Roughness Prepared by a Composite Etching Method. ACS Applied Materials & Interfaces, 14, 34020–34028.

    Article  Google Scholar 

  36. Rabinovich, Y. I., Adler, J. J., Ata, A., Singh, R. K., & Moudgil, B. M. (2000). Adhesion between Nanoscale Rough Surfaces. Journal of Colloid and Interface Science, 232, 10–16.

    Article  Google Scholar 

  37. Lee, S. S., Micklow, L., Tunell, A., Chien, K. C., Mohanty, S., Cates, N., Furst, S., & Chang, C. H. (2023). Engineering Large-Area Antidust Surfaces by Harnessing Interparticle Forces. ACS Applied Materials & Interfaces, 15, 13678–13688.

    Article  Google Scholar 

  38. Lin, Y.-T., Walczak, W., Banerjee, J., Smith, N. J., Agnello, G., Zoba, A. N., Manley, R., & Kim, S. H. (2022). Particle Size and Humidity Effects on Nanocellulose Adhesion to Glass: Implications for Mitigating Particulate Contamination in Industrial Processes. ACS Applied Nano Materials, 5, 17004–17011.

    Article  Google Scholar 

  39. Kweon, H., Yiacoumi, S., & Tsouris, C. (2015). The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 583–590.

    Article  Google Scholar 

  40. Zhao, W., Lv, Y., Zhou, Q., & Yan, W. (2021). Collision-adhesion mechanism of particles and dust deposition simulation on solar PV modules. Renewable Energy, 176, 169–182.

    Article  Google Scholar 

  41. Yaqoob, M. A., de Rooij, M. B., & Schipper, D. J. (2013). On the Transition from Bulk to Ordered Form of Water: A Theoretical Model to Calculate Adhesion Force Due to Capillary and van der Waals Interaction. Tribology Letters, 49, 491–499.

    Article  Google Scholar 

  42. Yong, J., Chen, F., Fang, Y., Huo, J., Yang, Q., Zhang, J., Bian, H., & Hou, X. (2017). Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. ACS Applied Materials & Interfaces, 9, 39863–39871.

    Article  Google Scholar 

  43. Zhao, H., Sun, Q., Deng, X., & Cui, J. (2018). Earthworm-Inspired Rough Polymer Coatings with Self-Replenishing Lubrication for Adaptive Friction-Reduction and Antifouling Surfaces. Advanced Materials, 30, e1802141.

    Article  Google Scholar 

  44. Han, Z., Fu, J., Fang, Y., Zhang, J., Niu, S., & Ren, L. (2017). Anti-adhesive property of maize leaf surface related with temperature and humidity. Journal of Bionic Engineering, 14, 540–548.

    Article  Google Scholar 

  45. Sun, J. Y., Wang, Y. M., Zhang, S. J., Ma, Y. H., Tong, J., & Zhang, Z. J. (2020). The mechanism of resistance-reducing/anti-adhesion and its application on biomimetic disc furrow opener. Mathematical Biosciences and Engineering, 17, 4657–4677.

    Article  Google Scholar 

  46. Zhu, C., Yu, X., Lv, J., Zhang, J., Yang, J., Hao, N., & Feng, J. (2020). Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure. ACS Applied Materials & Interfaces, 12, 53394–53402.

    Article  Google Scholar 

  47. Watson, G. S., Green, D. W., Cribb, B. W., Brown, C. L., Meritt, C. R., Tobin, M. J., Vongsvivut, J., Sun, M., Liang, A. P., & Watson, J. A. (2017). Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface. ACS Applied Materials & Interfaces, 9, 24381–24392.

    Article  Google Scholar 

  48. Tong, J., Sun, J., Chen, D., & Zhang, S. (2005). Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in tillage implements. Soil and Tillage Research, 80, 1–12.

    Article  Google Scholar 

  49. Zhang, X., Huang, X., Kwok, S. W., & Soh, S. (2016). Designing Non-charging Surfaces from Non-conductive Polymers. Advanced Materials, 28, 3024–3029.

    Article  Google Scholar 

  50. Zheng, Y., Ma, S., Benassi, E., Feng, Y., Xu, S., Luo, N., Liu, Y., Cheng, L., Qin, Y., Yuan, M., Wang, Z., Wang, D., & Zhou, F. (2022). Surface engineering and on-site charge neutralization for the regulation of contact electrification. Nano Energy, 91, 106687.

    Article  Google Scholar 

  51. Fang, Y., Gonuguntla, S., & Soh, S. (2017). Universal Nature-Inspired Coatings for Preparing Noncharging Surfaces. ACS Applied Materials & Interfaces, 9, 32220–32226.

    Article  Google Scholar 

  52. Alizadehyazdi, V., Bonthron, M., & Spenko, M. (2020). Optimizing electrostatic cleaning for dust removal on gecko-inspired adhesives. Journal of Electrostatics, 108, 103499.

    Article  Google Scholar 

  53. Alizadehyazdi, V., Modabberifar, M., MahmoudzadehAkherat, S. M. J., & Spenko, M. (2018). Electrostatic self-cleaning gecko-like adhesives. Journal of the Royal Society Interface, 15, 20170714.

    Article  Google Scholar 

  54. Panat, S., & Varanasi, K. K. (2022). Electrostatic dust removal using adsorbed moisture-assisted charge induction for sustainable operation of solar panels. Science Advances, 8, eabm0078.

    Article  Google Scholar 

  55. Guo, B., Ji, X., Wang, W., Chen, X., Wang, P., Wang, L., & Bai, J. (2021). Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B: Engineering, 208, 108598.

    Article  Google Scholar 

  56. Fenero, M., Palenzuela, J., Azpitarte, I., Knez, M., Rodriguez, J., & Tena-Zaera, R. (2017). Laponite-Based Surfaces with Holistic Self-Cleaning Functionality by Combining Antistatics and Omniphobicity. ACS Applied Materials & Interfaces, 9, 39078–39085.

    Article  Google Scholar 

  57. Wang, L. (2023). A critical review on robust self-cleaning properties of lotus leaf. Soft Matter, 19, 1058–1075.

    Article  Google Scholar 

  58. Wu, Y., Jia, S., Qing, Y., Luo, S., & Liu, M. (2016). A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. Journal of Materials Chemistry A, 4, 14111–14121.

    Article  Google Scholar 

  59. Nishimura, R., Mayama, H., Nonomura, Y., Yokojima, S., Nakamura, S., & Uchida, K. (2019). Crystal Growth Technique for Formation of Double Roughness Structures Mimicking Lotus Leaf. Langmuir, 35, 14124–14132.

    Article  Google Scholar 

  60. Bixler, G. D., & Bhushan, B. (2013). Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale, 5, 7685–7710.

    Article  Google Scholar 

  61. Bixler, G. D., & Bhushan, B. (2014). Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale, 6, 76–96.

    Article  Google Scholar 

  62. Bixler, G. D., Theiss, A., Bhushan, B., & Lee, S. C. (2014). Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 419, 114–133.

    Article  Google Scholar 

  63. Huang, S., & Wang, D. (2017). A Simple Nanocellulose Coating for Self-Cleaning upon Water Action: Molecular Design of Stable Surface Hydrophilicity. Angewandte Chemie (International ed. in English), 56, 9053–9057.

    Article  Google Scholar 

  64. Isakov, K., Kauppinen, C., Franssila, S., & Lipsanen, H. (2020). Superhydrophobic Antireflection Coating on Glass Using Grass-like Alumina and Fluoropolymer. ACS Applied Materials & Interfaces, 12, 49957–49962.

    Article  Google Scholar 

  65. Chen, Y. C., Huang, Z. S., & Yang, H. (2015). Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates. ACS Applied Materials & Interfaces, 7, 25495–25505.

    Article  Google Scholar 

  66. Lee, K. W., Lim, W., Jeon, M. S., Jang, H., Hwang, J., Lee, C. H., & Kim, D. R. (2021). Visibly Clear Radiative Cooling Metamaterials for Enhanced Thermal Management in Solar Cells and Windows. Advanced Functional Materials, 32, 2105882.

    Article  Google Scholar 

  67. Song, J., Zhang, W., Sun, Z., Pan, M., Tian, F., Li, X., Ye, M., & Deng, X. (2022). Durable radiative cooling against environmental aging. Nature Communications, 13, 4805.

    Article  Google Scholar 

  68. Cai, C., Chen, W., Wei, Z., Ding, C., Sun, B., Gerhard, C., Fu, Y., & Zhang, K. (2023). Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy, 114, 108625.

    Article  Google Scholar 

  69. Mishnaevsky, L., Hasager, C. B., Bak, C., Tilg, A.-M., Bech, J. I., Doagou Rad, S., & Fæster, S. (2021). Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renewable Energy, 169, 953–969.

    Article  Google Scholar 

  70. Khalfallah, M. G., & Koliub, A. M. (2007). Effect of dust on the performance of wind turbines. Desalination, 209, 209–220.

    Article  Google Scholar 

  71. Chernyshev, S. L., Lyapunov, S. V., & Wolkov, A. V. (2019). Modern problems of aircraft aerodynamics. Advances in Aerodynamics, 1, 7.

    Article  Google Scholar 

  72. Choudhury, R. R., Gohil, J. M., Mohanty, S., & Nayak, S. K. (2018). Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. Journal of Materials Chemistry A, 6, 313–333.

    Article  Google Scholar 

  73. Alkhatib, A., Ayari, M. A., & Hawari, A. H. (2021). Fouling mitigation strategies for different foulants in membrane distillation. Chemical Engineering and Processing - Process Intensification, 167, 108517.

    Article  Google Scholar 

  74. AlSawaftah, N., Abuwatfa, W., Darwish, N., & Husseini, G. (2021). A Comprehensive Review on Membrane Fouling: Mathematical Modelling. Prediction, Diagnosis, and Mitigation, Water, 13, 1327.

    Google Scholar 

  75. Husna, U. Z., Elraies, K. A., Shuhili, J. A. B. M., & Elryes, A. A. (2021). A review: The utilization potency of biopolymer as an eco-friendly scale inhibitors. Journal of Petroleum Exploration and Production Technology, 12, 1075–1094.

    Article  Google Scholar 

  76. Wang, J., Wang, L., Miao, R., Lv, Y., Wang, X., Meng, X., Yang, R., & Zhang, X. (2016). Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms. Water Research, 91, 203–213.

    Article  Google Scholar 

  77. Karthika, S., Radhakrishnan, T. K., & Kalaichelvi, P. (2016). A Review of Classical and Nonclassical Nucleation Theories. Crystal Growth & Design, 16, 6663–6681.

    Article  Google Scholar 

  78. Tong, T., Wallace, A. F., Zhao, S., & Wang, Z. (2019). Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science, 579, 52–69.

    Article  Google Scholar 

  79. Huang, X., Li, C., Zuo, K., & Li, Q. (2020). Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation. Environmental Science and Technology, 54, 15395–15404.

    Article  Google Scholar 

  80. Yamanaka, S., Ito, N., Shimosaka, A., Shirakawa, Y., & Hidaka, J. (2009). AFM Investigation for the Initial Growth Processes of Calcium Carbonate on Hydrophilic and Hydrophobic Substrate. Crystal Growth & Design, 9, 3245–3250.

    Article  Google Scholar 

  81. Chevalier, N. R. (2014). Do Surface Wetting Properties Affect Calcium Carbonate Heterogeneous Nucleation and Adhesion? The Journal of Physical Chemistry C, 118, 17600–17607.

    Article  Google Scholar 

  82. Hidema, R., Toyoda, T., Suzuki, H., Komoda, Y., & Shibata, Y. (2016). Adhesive behavior of a calcium carbonate particle to solid walls having different hydrophilic characteristics. International Journal of Heat and Mass Transfer, 92, 603–609.

    Article  Google Scholar 

  83. Jaramillo, H., Boo, C., Hashmi, S. M., & Elimelech, M. (2021). Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis. Journal of Membrane Science, 618, 118568.

    Article  Google Scholar 

  84. Yin, Y., Li, T., Zuo, K., Liu, X., Lin, S., Yao, Y., & Tong, T. (2022). Which Surface Is More Scaling Resistant? A Closer Look at Nucleation Theories for Heterogeneous Gypsum Nucleation in Aqueous Solutions, Environ Sci Technol, 56, 16315–16324.

    Google Scholar 

  85. Tong, T., Liu, X., Li, T., Park, S., & Anger, B. (2023). A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. Environmental Science and Technology, 57, 7129–7149.

    Article  Google Scholar 

  86. Myerson, A. S., & Trout, B. L. (2013). Chemistry. Nucleation from solution, Science, 341, 855–856.

    Google Scholar 

  87. Wallace, A. F., Hedges, L. O., Fernandez-Martinez, A., Raiteri, P., Gale, J. D., Waychunas, G. A., Whitelam, S., Banfield, J. F., & De Yoreo, J. J. (2013). Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science, 341, 885–889.

    Article  Google Scholar 

  88. Gebauer, D., Volkel, A., & Colfen, H. (2008). Stable prenucleation calcium carbonate clusters. Science, 322, 1819–1822.

    Article  Google Scholar 

  89. Cruz-Silva, R., Takizawa, Y., Nakaruk, A., Katouda, M., Yamanaka, A., Ortiz-Medina, J., Morelos-Gomez, A., Tejima, S., Obata, M., Takeuchi, K., Noguchi, T., Hayashi, T., Terrones, M., & Endo, M. (2019). New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes. Environmental Science and Technology, 53, 6255–6263.

    Article  Google Scholar 

  90. Costa, F. C. R., Ricci, B. C., Teodoro, B., Koch, K., Drewes, J. E., & Amaral, M. C. S. (2021). Biofouling in membrane distillation applications - a review. Desalination, 516, 115241.

    Article  Google Scholar 

  91. Wang, Y., Wang, S., & Meng, J. (2022). Recent progress of bioinspired interfacial materials towards efficient and sustainable scale resistance. Giant, 11, 100116.

    Article  Google Scholar 

  92. Jung, K. K., Jung, Y., Park, B.-G., Choi, C. J., & Ko, J. S. (2021). Super Wear Resistant Nanostructured Superhydrophobic Surface. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1177–1189.

    Article  Google Scholar 

  93. Barthwal, S., & Lim, S.-H. (2019). Robust and Chemically Stable Superhydrophobic Aluminum-Alloy Surface with Enhanced Corrosion-Resistance Properties. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 481–492.

    Article  Google Scholar 

  94. Jo, S., Lee, H., Jang, H., & Kim, D. R. (2021). Controlled Integration of Interconnected Pores under Polymeric Surfaces for Low Adhesion and Antiscaling Performance. ACS Applied Materials & Interfaces, 13, 13684–13692.

    Article  Google Scholar 

  95. Moon, I. Y., Kim, B. H., Lee, H. W., Oh, Y.-S., Kim, J. H., & Kang, S.-H. (2019). Superhydrophobic Polymer Surface with Hierarchical Patterns Fabricated in Hot Imprinting Process. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 493–503.

    Article  Google Scholar 

  96. Kang, B., Sung, J., & So, H. (2019). Realization of Superhydrophobic Surfaces Based on Three-Dimensional Printing Technology. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 47–55.

    Article  Google Scholar 

  97. Sung, J., Lee, H. M., Yoon, G. H., Bae, S., & So, H. (2022). One-Step Fabrication of Superhydrophobic Surfaces with Wettability Gradient Using Three-Dimensional Printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 85–96.

    Article  Google Scholar 

  98. Qian, H., Zhu, M., Song, H., Wang, H., Liu, Z., & Wang, C. (2020). Anti-scaling of superhydrophobic poly(vinylidene fluoride) composite coating: Tackling effect of carbon nanotubes. Progress in Organic Coatings, 142, 105566.

    Article  Google Scholar 

  99. Wang, Y., Zhao, R., He, X., Zhang, Z., Meng, J., & Wang, S. (2023). Water Spider-Inspired Nanofiber Coating with Sustainable Scale Repellency via Air-Replenishing Strategy. Advanced Materials, 35, e2209796.

    Article  Google Scholar 

  100. Wong, T. S., Kang, S. H., Tang, S. K., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443–447.

    Article  Google Scholar 

  101. Lian, Z., Cheng, Y., Xu, J., Xu, J., Ren, W., Tian, Y., & Yu, H. (2022). Green Fabrication of Anti-friction Slippery Liquid-Infused Metallic Surface with Sub-millimeter-Scale Asymmetric Bump Arrays and Its Application. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 1281–1298.

    Article  Google Scholar 

  102. Ahn, J., Jeon, Y., Lee, K. W., Yi, J., Kim, S. W., & Kim, D. R. (2020). Bactericidal Lubricating Synthetic Materials for Three-Dimensional Additive Assembly with Controlled Mechanical Properties. ACS Applied Materials & Interfaces, 12, 26464–26475.

    Article  Google Scholar 

  103. Ahn, J., Jeon, J., Heu, C. S., & Kim, D. R. (2018). Three-Dimensionally Programmed Slippery Wrinkles with High Stretchability for Tunable Functionality of Icephobicity and Effective Water Harvesting. Advanced Materials Interfaces, 5, 1800980.

    Article  Google Scholar 

  104. Masoudi, A., Irajizad, P., Farokhnia, N., Kashyap, V., & Ghasemi, H. (2017). Antiscaling Magnetic Slippery Surfaces. ACS Applied Materials & Interfaces, 9, 21025–21033.

    Article  Google Scholar 

  105. Zhang, J., Wang, X., Zhang, C., Yan Feng, H., Yu, B., Yang, W., Pei, X., & Zhou, F. (2022). Self-lubricating interpenetrating polymer networks with functionalized nanoparticles enhancement for quasi-static and dynamic antifouling. Chemical Engineering Journal, 429, 132300.

    Article  Google Scholar 

  106. Zhang, N., Cheng, K., Zhang, J., Li, N., Yang, X., & Wang, Z. (2022). A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance. Journal of Membrane Science, 660, 120829.

    Article  Google Scholar 

  107. Zhao, Y., Xu, T., Zhou, J.-H., & Hu, J.-M. (2022). Superhydrophobic nanocontainers for passive and active corrosion protection. Chemical Engineering Journal, 433, 134039.

    Article  Google Scholar 

  108. Tian, L., Yin, Y., Bing, W., & Jin, E. (2021). Antifouling Technology Trends in Marine Environmental Protection. Journal of Bionic Engineering, 18, 239–263.

    Article  Google Scholar 

  109. Baum, C., Meyer, W., Roessner, D., Siebers, D., & Fleischer, L. G. (2001). A zymogel enhances the self-cleaning abilities of the skin of the pilot whale (Globicephala melas). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130, 835–847.

    Article  Google Scholar 

  110. Baum, C., Meyer, W., Stelzer, R., Fleischer, L. G., & Siebers, D. (2002). Average nanorough skin surface of the pilot whale ( Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness. Marine Biology, 140, 653–657.

    Article  Google Scholar 

  111. Dai, G., Xie, Q., Ai, X., Ma, C., & Zhang, G. (2019). Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling. ACS Applied Materials & Interfaces, 11, 41750–41757.

    Article  Google Scholar 

  112. Wang, X., Yu, L., Liu, Y., & Jiang, X. (2020). Synthesis and fouling resistance of capsaicin derivatives containing amide groups. Science of the Total Environment, 710, 136361.

    Article  Google Scholar 

  113. Xu, J., Feng, X., Hou, J., Wang, X., Shan, B., Yu, L., & Gao, C. (2013). Preparation and characterization of a novel polysulfone UF membrane using a copolymer with capsaicin-mimic moieties for improved anti-fouling properties. Journal of Membrane Science, 446, 171–180.

    Article  Google Scholar 

  114. Wang, X., Yang, J., Liu, Z., Jiang, X., & Yu, L. (2022). Antifouling Property of Cu(2)O-Free Self-Polishing Antifouling Coatings Based on Amide Derivatives Inspired by Capsaicin. Langmuir, 38, 10244–10255.

    Article  Google Scholar 

  115. Jo, S., Ahn, S., Lee, H., Jung, C. M., Song, S., & Kim, D. R. (2018). Water-repellent Hybrid Nanowire and Micro-scale Denticle Structures on Flexible Substrates of Effective Air Retention. Science and Reports, 8, 16631.

    Article  Google Scholar 

  116. Kim, H. N., Jeong, S. W., Baik, B. G., Jang, H., Jeong, H. E., & Lee, S. J. (2023). Bioinspired low-friction surface coating with lubricant-infused spherical cavities for sustainable drag reduction. Applied Surface Science, 628, 157365.

    Article  Google Scholar 

  117. Qin, L., Ma, Z., Sun, H., Lu, S., Zeng, Q., Zhang, Y., & Dong, G. (2021). Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67. Surface and Coatings Technology, 427, 127836.

    Article  Google Scholar 

  118. Jin, H., Wang, J., Tian, L., Gao, M., Zhao, J., & Ren, L. (2022). Recent advances in emerging integrated antifouling and anticorrosion coatings. Materials & Design, 213, 110307.

    Article  Google Scholar 

  119. Zhang, L. Y., Feng, D. Q., Zhu, P. Y., Song, W. L., Yasir, M., Zhang, C., & Liu, L. (2023). Hydrogel-Anchored Fe-Based Amorphous Coatings with Integrated Antifouling and Anticorrosion Functionality. ACS Applied Materials & Interfaces, 15, 13644–13655.

    Article  Google Scholar 

  120. Osorio-Celestino, G. R., Hernandez, M., Solis-Ibarra, D., Tehuacanero-Cuapa, S., Rodriguez-Gomez, A., & Gomora-Figueroa, A. P. (2020). Influence of Calcium Scaling on Corrosion Behavior of Steel and Aluminum Alloys. ACS Omega, 5, 17304–17313.

    Article  Google Scholar 

  121. Hua, Y., Shamsa, A., Barker, R., & Neville, A. (2018). Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl−, Ca2+ and Mg2+ in high pressure CO2 environments. Applied Surface Science, 455, 667–682.

    Article  Google Scholar 

  122. Yang, Z., He, X., Chang, J., Yuan, C., & Bai, X. (2021). Facile fabrication of fluorine-free slippery lubricant-infused cerium stearate surfaces for marine antifouling and anticorrosion application. Surface and Coatings Technology, 415, 127136.

    Article  Google Scholar 

  123. Kim, J., Hwang, J., Kim, S., Cho, S. H., Choi, H., Kim, H.-Y., & Lee, Y. S. (2021). Interfacial Solar Evaporator - Physical Principles and Fabrication Methods. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 1347–1367.

    Article  Google Scholar 

  124. Xu, N., Li, J., Wang, Y., Fang, C., Li, X., Wang, Y., Zhou, L., Zhu, B., Wu, Z., Zhu, S., & Zhu, J. (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci Adv, 5, eaaw7013.

    Article  Google Scholar 

  125. Servi, A. T., Guillen-Burrieza, E., Warsinger, D. M., Livernois, W., Notarangelo, K., Kharraz, J., Arafat, H. A., & Gleason, K. K. (2017). The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes. Journal of Membrane Science, 523, 470–479.

    Article  Google Scholar 

  126. Jiang, X., Shao, Y., Li, J., Wu, M., Niu, Y., Ruan, X., Yan, X., Li, X., & He, G. (2020). Bioinspired Hybrid Micro/Nanostructure Composited Membrane with Intensified Mass Transfer and Antifouling for High Saline Water Membrane Distillation. ACS Nano, 14, 17376–17386.

    Article  Google Scholar 

  127. Khalid, H. M., Rafique, Z., Muyeen, S. M., Raqeeb, A., Said, Z., Saidur, R., & Sopian, K. (2023). Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Solar Energy, 251, 261–285.

    Article  Google Scholar 

  128. Abubakar, A. A., Yilbas, B. S., Al-Qahtani, H., Alzaydi, A., & Alhelou, S. (2020). Environmental dust repelling from hydrophobic and hydrophilic surfaces under vibrational excitation. Science and Reports, 10, 14346.

    Article  Google Scholar 

  129. Patel, S., Veerasamy, V. S., St. John, J. P., & Orlov, A. (2023). A comprehensive review on dust removal using electrodynamic shield: Mechanism, influencing factors, performance, and progress. Renewable and Sustainable Energy Reviews, 183, 113471.

    Article  Google Scholar 

  130. Wei, Y., Wu, Q., Meng, H., Zhang, Y., & Cao, C. (2023). Recent advances in photocatalytic self-cleaning performances of TiO(2)-based building materials. RSC Advances, 13, 20584–20597.

    Article  Google Scholar 

  131. Li, F., Liu, G., Liu, F., & Yang, S. (2023). A review of self-cleaning photocatalytic surface: Effect of surface characteristics on photocatalytic activity for NO. Environmental Pollution, 327, 121580.

    Article  Google Scholar 

  132. Padmanabhan, N. T., Jayaraj, M. K., & John, H. (2020). Graphene hybridized high energy faceted titanium dioxide for transparent self-cleaning coatings. Catalysis Today, 348, 63–71.

    Article  Google Scholar 

  133. Zarębska, M., & Bajkacz, S. (2023). Poly– and perfluoroalkyl substances (PFAS) - recent advances in the aquatic environment analysis. TrAC Trends in Analytical Chemistry, 163, 117062.

    Article  Google Scholar 

  134. Zahid, M., Mazzon, G., Athanassiou, A., & Bayer, I. S. (2019). Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art. Advances in Colloid and Interface Science, 270, 216–250.

    Article  Google Scholar 

  135. Guzman-Puyol, S., Tedeschi, G., Goldoni, L., Benítez, J. J., Ceseracciu, L., Koschella, A., Heinze, T., Athanassiou, A., & Heredia-Guerrero, J. A. (2022). Greaseproof, hydrophobic, and biodegradable food packaging bioplastics from C6-fluorinated cellulose esters. Food Hydrocolloids, 128, 107562.

    Article  Google Scholar 

  136. Wong, W. S. Y., Kiseleva, M. S., Zhou, S., Junaid, M., Pitkanen, L., & Ras, R. H. A. (2023). Design of Fluoro-Free Surfaces Super-Repellent to Low-Surface-Tension Liquids. Advanced Materials, 35, e2300306.

    Article  Google Scholar 

  137. Ali, A., Culliton, D., Fahad, S., Ali, Z., Kang, E.-T., & Xu, L. (2024). Nature-inspired anti-fouling strategies for combating marine biofouling. Progress in Organic Coatings, 189, 108349.

    Article  Google Scholar 

  138. Karyani, T. Z., Ghattavi, S., & Homaei, A. (2023). Application of enzymes for targeted removal of biofilm and fouling from fouling-release surfaces in marine environments: A review. International Journal of Biological Macromolecules, 253, 127269.

    Article  Google Scholar 

  139. Gao, J., Zhang, K., Li, H., Lang, C., & Zhang, L. (2023). Eco-friendly intrinsic self-healing superhydrophobic polyurea/TiO2 composite coatings for underwater drag reduction and antifouling. Progress in Organic Coatings, 183, 107769.

    Article  Google Scholar 

  140. Natalio, F., Andre, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7, 530–535.

    Article  Google Scholar 

  141. Xiang, H., Yuan, Y., Zhu, T., Dai, X., Zhang, C., Gai, Y., & Liao, R. (2023). Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor. ACS Applied Materials & Interfaces, 15, 34215–34229.

    Article  Google Scholar 

  142. Kim, G. Y., Song, D.-S., Kwon, K.-K., & Ahn, S.-H. (2024). Sound-Based Depth Estimation of Glass Microchannel in Laser-Induced Backside Wet Etching Using Wavelet Transform. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-023-00590-9

    Article  Google Scholar 

  143. Yang, K.-S., Zheng, J.-W., Wu, K.-L., & Wu, Y.-L. (2023). Performance of the frosting characteristics of fin-and-tube heat exchanger subject to superhydrophobic coating. Applied Thermal Engineering, 235, 121338.

    Article  Google Scholar 

  144. Jang, K., Park, C., Kim, T., Aldalbahi, A., El-Newehy, M., Bang, B.-H., & Yoon, S. S. (2023). Efficient Solar Heat Absorption and Counter Passive Air Cooling Using Supersonically Sprayed rGO/AgNW Nanotextured Surface for Solar Devices. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 1529–1541.

    Article  Google Scholar 

  145. Kim, T., Park, C., Kim, Y., Aldalbahi, A., El-Newehy, M., An, S., & Yoon, S. S. (2022). Enhancing Solar Radiant Heat Transfer Using Supersonically Sprayed rGO/AgNW Textured Surfaces. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 23–33.

    Article  Google Scholar 

  146. Park, M., Hong, S. C., Jang, Y.-W., Byeon, J., Jang, J., Han, M., Kim, U., Jeong, K., Choi, M., & Lee, G. (2022). Scalable Production of High Performance Flexible Perovskite Solar Cells via Film-Growth-Megasonic-Spray-Coating System. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 1223–1234.

    Article  Google Scholar 

  147. Bai, Y., Zheng, H., Zhang, H., Shao, Y., Zhang, H., & Zhu, J. (2023). A melting pre-bonding method for fabrication of mechanical-robust superhydrophobic powder coatings. Progress in Organic Coatings, 182, 107680.

    Article  Google Scholar 

  148. Schmidt, C., Li, W., Thiede, S., Kara, S., & Herrmann, C. (2015). A methodology for customized prediction of energy consumption in manufacturing industries. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 163–172.

    Article  Google Scholar 

  149. Li, R., Wang, Z., Zhang, Y., Li, Z., Luo, X., Lu, W., & Gu, Z. (2024). Performance improvement of vapor compression heat pump with superhydrophobic finned-tube evaporator. Journal of Building Engineering, 87, 109013.

    Article  Google Scholar 

  150. Wang, D., Sun, Q., Hokkanen, M. J., Zhang, C., Lin, F. Y., Liu, Q., Zhu, S. P., Zhou, T., Chang, Q., He, B., Zhou, Q., Chen, L., Wang, Z., Ras, R. H. A., & Deng, X. (2020). Design of robust superhydrophobic surfaces. Nature, 582, 55–59.

    Article  Google Scholar 

  151. Peng, C., Chen, Z., & Tiwari, M. K. (2018). All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nature Materials, 17, 355–360.

    Article  Google Scholar 

  152. Lyu, Y., Pang, Y., Liu, T., & Sun, W. (2024). Determining hyperelastic properties of the constituents of the mussel byssus system. Soft Matter, 20, 2442–2454.

    Article  Google Scholar 

  153. Baskaran, N., Wang, Y. C., Tan, R. J., Chung, R. J., & Wei, Y. (2023). Overcoming the yield challenge of mussel foot proteins: Enhancing adhesion through metal ion-incorporated nanoparticles. Colloids and Surfaces. B, Biointerfaces, 229, 113479.

    Article  Google Scholar 

  154. Zhang, C., Xiang, L., Zhang, J., Liu, C., Wang, Z., Zeng, H., & Xu, Z. K. (2022). Revisiting the adhesion mechanism of mussel-inspired chemistry. Chemical Science, 13, 1698–1705.

    Article  Google Scholar 

  155. Jiang, J., Zhu, L., Zhu, L., Zhang, H., Zhu, B., & Xu, Y. (2013). Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 5, 12895–12904.

    Article  Google Scholar 

  156. Wong, W. S. Y., & Vollmer, D. (2021). Effervescence-Inspired Self-Healing Plastrons for Long-Term Immersion Stability. Advanced Functional Materials, 32, 2107831.

    Article  Google Scholar 

  157. Hatte, S., & Pitchumani, R. (2022). Novel nonwetting solid-infused surfaces for superior fouling mitigation. Journal of Colloid and Interface Science, 627, 308–319.

    Article  Google Scholar 

  158. Oh, J., Dana, C. E., Hong, S., Roman, J. K., Jo, K. D., Hong, J. W., Nguyen, J., Cropek, D. M., Alleyne, M., & Miljkovic, N. (2017). Exploring the Role of Habitat on the Wettability of Cicada Wings. ACS Applied Materials & Interfaces, 9, 27173–27184.

    Article  Google Scholar 

  159. Li, T., Luo, H., Qin, L., Wang, X., Xiong, Z., Ding, H., Gu, Y., Liu, Z., & Zhang, T. (2016). Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer. Small (Weinheim an der Bergstrasse, Germany), 12, 5042–5048.

    Article  Google Scholar 

  160. Huang, Y., Stogin, B. B., Sun, N., Wang, J., Yang, S., & Wong, T. S. (2017). A Switchable Cross-Species Liquid Repellent Surface. Advanced Materials, 29, 1604641.

    Article  Google Scholar 

  161. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24, 4114–4119.

    Article  Google Scholar 

  162. He, W., Liu, P., Zhang, J., & Yao, X. (2018). Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields. Chemistry, 24, 14864–14877.

    Article  Google Scholar 

  163. Rice, W. L., Van Hoek, A. N., Paunescu, T. G., Huynh, C., Goetze, B., Singh, B., Scipioni, L., Stern, L. A., & Brown, D. (2013). High resolution helium ion scanning microscopy of the rat kidney. PLoS ONE, 8, e57051.

    Article  Google Scholar 

  164. Xu, G., Liu, P., Pranantyo, D., Neoh, K.-G., & Kang, E.-T. (2018). Dextran- and Chitosan-Based Antifouling, Antimicrobial Adhesion, and Self-Polishing Multilayer Coatings from pH-Responsive Linkages-Enabled Layer-by-Layer Assembly. ACS Sustainable Chemistry & Engineering, 6, 3916–3926.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (20212020800090, RS-2023-00236325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Rip Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.B., Lee, H. & Kim, D.R. Design and Fabrication of Nature-Inspired Surfaces for Anti-Fouling: A Review. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00635-7

Keywords

Navigation