Skip to main content
Log in

Facile Fabrication of Highly Flexible and Sensitive Strain Sensors Based on UV-laser-reduced Graphene Oxide with CuO Nanoparticles for Human Health Monitoring

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Applications of graphene-based materials in wearable devices have garnered significant attention owing to their excellent mechanical and electrical properties. However, graphene fabrication is hindered by its inherent structural characteristics, which necessitates the development of alternative materials for strain sensors. In this study, a novel flexible resistive-type strain sensor composed of a unique three-dimensional conductive carbon network was fabricated using a UV pulsed laser. Using a 355-nm UV pulsed laser, composites based on UV laser-reduced graphene oxide (UV-LRGO) with CuO nanoparticles on a PDMS substrate (Cu/UV-LRGO/PDMS) were selectively fabricated via direct laser writing. This fabrication method offers a contact-free, environmentally sustainable, and cost-effective approach, providing a streamlined one-step process that eliminates the necessity for toxic chemicals, thermal reduction, and complex protocols. The composites were meticulously characterized via various spectroscopic techniques. Notably, the proposed sensor exhibited robust performance, withstanding 7,200 stretching-relaxing cycles and accommodating strains of up to 25%, while also exhibiting a high strain gauge factor (~ 1026 GF). This work introduces a straightforward strategy for fabricating flexible strain sensors with high sensitivity and remarkable repeatability for human health monitoring, and observations including wrist pulses, finger banding, and facial eyebrow movements can be effectively monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Belleville, C., & Duplain, G. (1993). White-light interferometric multimode fiber-optic strain sensor. Optics Letters, 18(1), 78–80.

    Article  Google Scholar 

  2. Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Letters, 18(16), 1370–1372.

    Article  Google Scholar 

  3. Zhou, F., Fu, X., Chen, S., Kim, E., & Jun, M. B. G. (2023). Fiber optic sensor for smart manufacturing. International Journal of Precision Engineering and Manufacturing, 1(2), 125–136.

    Google Scholar 

  4. Kang, I., Schulz, M. J., Kim, J. H., Shanov, V., & Shi, D. (2006). A carbon nanotube strain sensor for structural health monitoring. Smart Materials and Structures, 15, 737–748.

    Article  Google Scholar 

  5. Yamade, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. A. (2011). Stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6, 296–301.

    Article  Google Scholar 

  6. Lee, J., Kim, S., Lee, J., Yang, D., Park, B. C., Ryu, S., & Park, I. (2014). A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 6, 11932–11939.

    Article  Google Scholar 

  7. Ryu, S., Lee, P., Chou, J. B., Xu, R., Zhao, R., Hart, A. J., & Kim, S. G. (2015). Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 9(6), 5929–5936.

    Article  Google Scholar 

  8. Roh, E., Hwang, B. U., Kim, D., Kim, B. Y., & Lee, N. E. (2015). Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano, 9(6), 6252–6261.

    Article  Google Scholar 

  9. Feng, W., Zheng, W., Gao, F., Chen, X. S., Liu, G., Hasan, T., Cao, W. W., & Hu, P. A. (2016). Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chemistry of Materials, 28(12), 4278–4283.

    Article  Google Scholar 

  10. Chortos, A., Liu, J., & Bao, Z. (2016). Pursuing prosthetic electronic skin. Nature Materials, 15, 937–950.

    Article  Google Scholar 

  11. Kim, S., Park, C. Y., Kim, C., Kim, H. C., & Lee, I. H. (2023). Design and characterization of flexible strain sensors using pressure-sensitive material with multi-walled carbon nanotubes and polydimethylsiloxane. International Journal of Precision Engineering and Manufacturing, 24(12), 2361–2369.

    Article  Google Scholar 

  12. Harada, S., Honda, W., Arie, T., Akita, S., & Takei, K. (2014). Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano, 8(4), 3921–3927.

    Article  Google Scholar 

  13. Kim, K. K., Hong, S., Cho, H. M., Lee, J., Suh, Y. D., Ham, J., & Ko, S. H. (2015). Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Letters, 15(8), 5240–5247.

    Article  Google Scholar 

  14. Wu, X., Han, Y., Zhang, X., & Lu, C. (2016). Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@Polyurethane yarn for tiny motion monitoring. ACS Applied Materials & Interfaces, 8(15), 9936–9945.

    Article  Google Scholar 

  15. Lee, C. J., Park, K. H., Han, C. J., Oh, M. S., You, B., Kim, Y. S., & Kim, J. W. (2017). Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Scientific Reports, 7, 7959.

    Article  Google Scholar 

  16. Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., & Guo, Z. (2016). Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. Journal of Materials Chemistry C, 4, 157–166.

    Article  Google Scholar 

  17. Liu, Q., Chen, J., Li, Y., & Shi, G. (2016). High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano, 10(8), 7901–7906.

    Article  Google Scholar 

  18. Zou, Y., Zhong, M., Li, S., Qing, Z., Xing, X., Gong, G., Yan, R., Qin, W., Shen, J., Zhang, H., & Jiang, Y. (2023). Flexible wearable strain sensors based on laser-induced graphene for monitoring human physiological signals. Polymers, 15(17), 3553.

    Article  Google Scholar 

  19. Carvalho, A. F., Fernandes, A. J., Leitão, C., Deuermeier, J., Marques, A. C., Martins, R., Fortunato, E., & Costa, F. M. (2018). Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Advanced Functional Materials, 28(52), 1805271.

    Article  Google Scholar 

  20. Yu, H., Bian, J., Chen, F., Ji, J., & Huang, Y. (2023). Ultrathin, graphene-in-polyimide strain sensor via laser-induced interfacial ablation of polyimide. Advanced Electronic Materials, 9(9), 2201086.

    Article  Google Scholar 

  21. Kulyk, B., Silva, B. F., Carvalho, A. F., Silvestre, S., Fernandes, A. J., Martins, R., Fortunato, E., & Costa, F. M. (2021). Laser-induced graphene from paper for mechanical sensing. ACS Applied Materials & Interfaces, 13(8), 10210–10221.

    Article  Google Scholar 

  22. Chhetry, A., Sharifuzzaman, M., Yoon, H., Sharma, S., Xuan, X., & Park, J. Y. (2019). MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Applied Materials & Interfaces, 11(25), 22531–22542.

    Article  Google Scholar 

  23. Chhetry, A., Sharma, S., Barman, S. C., Yoon, H., Ko, S., Park, C., Yoon, S., Kim, H., & Park, J. Y. (2021). Black Phosphorus@Laser-engraved graphene heterostructure-based temperature-strain hybridized sensor for electronic-skin applications. Advanced Functional Materials, 31(10), 2007661.

    Article  Google Scholar 

  24. Yang, D., Nam, H. K., Le, T. S. D., Yeo, J., Lee, Y., Kim, Y. R., Kim, S. W., Choi, H. J., Shim, H. C., Ryu, S., & Kwon, S. (2023). Multimodal E-textile enabled by one-step maskless patterning of femtosecond-laser-induced graphene on nonwoven, knit, and woven textiles. ACS Nano, 17(19), 18893–18904.

    Article  Google Scholar 

  25. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 2006(442), 282–286.

    Article  Google Scholar 

  26. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162.

    Article  Google Scholar 

  27. Schwierz, F. (2010). Graphene transistor. Nature Nanotechnology, 5, 487–496.

    Article  Google Scholar 

  28. Tan, R. K. L., Reeves, S. P., Hashemi, N., Thomas, D. G., Kavak, E., Montazami, R., & Hashemi, N. N. (2017). Graphene as a flexible electrode: Review of fabrication approaches. Journal of Materials Chemistry A, 5, 17777.

    Article  Google Scholar 

  29. Yu, H., Zhang, B., Bulin, C., Li, R., & Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Science and Reports, 6, 34163.

    Google Scholar 

  30. Chen, J., Duan, M., & Chen, G. (2012). Continuous mechanical exfoliation of graphene sheets via three-roll mil. Journal of Materials Chemistry, 22, 19625.

    Article  Google Scholar 

  31. Losurdo, M., Giangregorio, M. M., Capezzuto, P., & Bruno, G. (2011). Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics: PCCP, 13, 20836–20843.

    Article  Google Scholar 

  32. Yang, W., Chen, G., Shi, Z., Liu, C. C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., Watanabe, K., Taniguchi, T., Yao, Y., Zhang, Y., & Zhang, G. (2013). Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Materials, 12, 792–797.

    Article  Google Scholar 

  33. Vanin, M., Mortensen, J. J., Kelkkanen, A. K., Garcia-Lastra, J. M., Thygesen, K. S., & Jacobsen, K. W. (2010). Graphene on metals: A van der Waals density functional study. Physical Review B, 81, 081408.

    Article  Google Scholar 

  34. Koenig, S. P., Boddeti, N. G., Dunn, M. L., & Bunch, J. S. (2011). Ultrastrong adhesion of graphene membranes. Nature Nanotechnology, 6, 543–546.

    Article  Google Scholar 

  35. Lee, J. H., Avsar, A., Jung, J., Tan, J. U., Watanabe, K., Taniguchi, T., Natarajan, S., Eda, G., Adam, S., Castro Neto, A. H., & Ozyilmaz, B. (2015). Nano Letters, 15(1), 319–325.

    Article  Google Scholar 

  36. Li, J., & Ostling, M. (2013). Prevention of graphene restacking for performance boost of supercapacitors—a review. Crystals, 3(1), 163–190.

    Article  Google Scholar 

  37. Zhu, W., Low, T., Perebeinos, V., Bol, A. A., Zhu, Y., Yan, H., Tersoff, J., & Avouris, P. (2012). Structure and electronic transport in graphene wrinkles. Nano Letters, 12(7), 3431–3436.

    Article  Google Scholar 

  38. Yang, X., Zhu, J., Qiu, L., & Li, D. (2011). Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Advanced Materials, 23, 2833–2838.

    Article  Google Scholar 

  39. Peng, H., Li, F., Hua, Z. H., Yang, K., Yin, F., & Yuan, W. (2018). Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene. Sensors and Actuators, B: Chemical, 275, 78–85.

    Article  Google Scholar 

  40. Pang, Y., Jian, J., Tu, T., Yang, Z., Ling, J., Li, Y., Wang, X., Qiao, Y., Tian, H., Yang, Y., & Ren, T. L. (2018). Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors & Bioelectronics, 116, 123–129.

    Article  Google Scholar 

  41. Xia, K., Wang, C., Jian, M., Wang, Q., & Zhang, Y. (2018). CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 11, 1124–1134.

    Article  Google Scholar 

  42. Rahim, R., Ochoa, M., Yu, W., & Ziaie, B. (2015). Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Applied Materials & Interfaces, 7(8), 4463–4470.

    Article  Google Scholar 

  43. Yang, Z., Wnag, D. Y., Pang, Y., Li, Y. X., Wang, Q., Zhang, T. Y., Wang, J. B., Liu, X., Yang, Y. Y., Jian, J. M., Jian, M. Q., Zhang, Y. Y., Yang, Y., & Ren, T. L. (2018). Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor. ACS Applied Materials & Interfaces, 10(4), 3948–3954.

    Article  Google Scholar 

  44. Trung, T. Q., Tien, N. T., Kim, D., Jang, M., Yoon, O. J., Lee N. E. (2013). A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Advanced Functional Materials24(1), 117–124.

  45. Gao, J., Li, B., Huang, X., Wang, L., Lin, L., Wang, H., & Xue, H. (2019). Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Journal of Chemical Engineering, 3, 298–306.

    Article  Google Scholar 

  46. Sun, B., McCay, R. N., Goswami, S., Xu, Y., Zhang, C., Ling, Y., Lin, L., & Yan, Z. (2018). Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Advanced Materials, 30, 1804327.

    Article  Google Scholar 

  47. Hummers, W. S., Jr., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339.

    Article  Google Scholar 

  48. Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., & Shenoy, V. B. (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2, 581–587.

    Article  Google Scholar 

  49. Hwang, Y. T., & Kim, H. S. (2022). The ultrafast and eco-friendly reduction of graphene oxide using a UV–IR assisted intense pulsed light and its application as supercapacitor. International Journal of Precision Engineering and Manufacturing, 9, 201–211.

    Google Scholar 

  50. Huang, X., Zhan, G., & Wang, X. (2015). Fabrication of reduced graphene oxide/metal (Cu, Ni, Co) nanoparticle hybrid composites via a facile thermal reduction method. RSC Advances, 2015(5), 49973–49978.

    Article  Google Scholar 

  51. Guardia, L., Villar-Rodlil, S., Paredes, J. I., Rozada, R., Martinez-Alonso, A., & Tascon, J. M. D. (2012). UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon, 50(3), 1014–1024.

    Article  Google Scholar 

  52. Bhattacharya, S., Datta, A., & Berg, J. (2005). Gangopadhyay, S. Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems, 14, 590–597.

    Article  Google Scholar 

  53. Hillborg, H., Ankner, J., Gedde, U., & Smith, G. (2000). Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer, 41, 6851–6863.

    Article  Google Scholar 

  54. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814.

    Article  Google Scholar 

  55. Wroblewska, A., Duzynska, A., Judek, J., Stobinski, L., Zeranska, K., Gertych, A. P., & Zdrojek, M. (2017). Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping. Journal of Physics: Condensed Matter, 29(47), 475201.

    Google Scholar 

  56. Saito, R., Furukawa, M., Dresselhaus, G., & Dresselhaus, M. S. (2010). Raman spectra of graphene ribbons. Journal of Physics: Condensed Matter, 22(33), 334203.

    Google Scholar 

  57. Scardaci, V., Compagnini, G., & Raman. (2021). Spectroscopy data related to the laser induced reduction of graphene oxide. Data in Brief, 38, 107306.

    Article  Google Scholar 

  58. Svintsitskiy, D. A., Kardash, T. Y., Stonkus, O. A., Slavinskaya, E. M., Stadnichenko, A. I., Koscheev, S. V., Chupakhin, A. P., & Boronin, A. I. (2013). In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. Journal of Physical Chemistry C, 117(28), 14588–14599.

    Article  Google Scholar 

  59. Sahai, A., Goswami, N., Kaushik, S. D., & Tripathi, S. (2016). Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Applied Surface Science, 390, 974–983.

    Article  Google Scholar 

Download references

Acknowledgements

Natural Sciences and Engineering Research Council of Canada (NSERC) under Discovery Grant RGPIN-2019-05778. This work was supported by the Technology Innovation Program (P0008763) funded by the (MOTIE, Korea). This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (grant number : HI19C1085).

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC) under Discovery Grant RGPIN-2019–05778. This work was supported by the Technology Innovation Program (P0008763) funded by the (MOTIE, Korea). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1A5A2027161).

Author information

Authors and Affiliations

Authors

Contributions

J.-U.L.; B.-S.K.; methodology, J.-U.L., B.-S.K. and S.-C.C.; software, J.-U.L.; B.-S.K.; and S.-C.C.; validation, J.-U.L. formal analysis, J.-U.L. and B.-S.K.; investigation, B.-S.S.; resources, J.-U.L. and P.C.L.; data curation, J.-U.L.; B.-S.K. and S.-C.C.; writing—original draft preparation, J.-U.L., B.-S.K. and S.-C.C.; writing—review and editing, P.C.L.; B.-S.S.; visualization, J.-U.L., P.C.L.; supervision, P.C.L, B.-S.S.; project administration, P.C.L.; B.-S.S.; funding acquisition, P.C.L.; B.-S.S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Bo-Sung Shin or Patrick C. Lee.

Ethics declarations

Competing Interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 777 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JU., Kang, BS., Cho, SC. et al. Facile Fabrication of Highly Flexible and Sensitive Strain Sensors Based on UV-laser-reduced Graphene Oxide with CuO Nanoparticles for Human Health Monitoring. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00632-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00632-w

Keywords

Navigation