Skip to main content
Log in

Abstract

Sustainability has become a prominent theme in the manufacturing industry, with an emphasis on optimal process configurations that enable environmentally friendly and economically viable operations. Particularly, the textile dyeing and finishing industry has garnered special attention due to its substantial water consumption and consequential wastewater generation. Moreover, dye residues in textile wastewater contain a multitude of chemical substances, posing a serious threat to environmental pollution. Therefore, there is a pressing need for effective decision-making tools to reduce dye residues. In this study, we introduce a reinforcement learning-based model to predict waste discharge in the textile dyeing and finishing industry and recommend dyeing process variables to minimize such waste. Leveraging manufacturing data collected from real production facilities, we constructed a Gradient Boosting model for waste prediction and developed a Q-learning-based process variables recommendation model for dye residue reduction. The recommendation model demonstrated high predictive performance with an R-value of 0.96, and through process configuration recommendations, achieved an average reduction of 66.58% in dye residue. These results have been validated through the collection of on-site information and experiments. This study proposes an innovative approach to effectively predict and reduce residual dyes generated in the dyeing and processing industry. However, a limitation of the developed dyeing process recommendation model is that it was tested on only two out of 124 formulations, making it challenging to generalize the model's performance. More extensive training data is necessary. These facts suggest that, if addressed in future research, improvements can overcome practical constraints and contribute to enhancing the prospects for future decision-making. It is anticipated that such advancements will strengthen the sustainability of the dyeing and processing industry, fostering environmentally friendly operations and contributing to a sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. He, Y., Cao, Y., Hwang, H., et al. (2022). Inkjet printing and in-situ crystallization of biopigments for eco-friendly and energy-efficient fabric coloration. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 941–953.

    Article  Google Scholar 

  2. Reible, D. D. (2005). Hazardous substance research centers/South and South-West outreach program environmental hazards of the textile industry. Business Week, 2005, 910.

    Google Scholar 

  3. Zaffalon, V. (2010). Climate change, carbon mitigation and textiles. Textile World, 160(4), 34.

    Google Scholar 

  4. Siddiqui, M. F., Khan, S. A., Hussain, D., Tabrez, U., Ahamad, I., Fatma, T., & Khan, T. A. (2022). A sugarcane bagasse carbon-based composite material to decolor and reduce bacterial loads in waste water from textile industry. Industrial Crops and Products, 176, 114301.

    Article  Google Scholar 

  5. Regti, A., Laamari, M. R., Stiriba, S.-E., & El Haddad, M. (2017). Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchemical Journal, 130, 129–136.

    Article  Google Scholar 

  6. Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674. https://doi.org/10.1109/21.97458

    Article  MathSciNet  Google Scholar 

  7. Liu, Z., Khan, T. A., Islam, M. A., & Tabrez, U. (2022). A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresource Technology, 354, 127168.

    Article  Google Scholar 

  8. Pratibha, R., Malar, P., Rajapriya, T., Balapoornima, S., & Ponnusami, V. (2010). Statistical and equilibrium studies on enhancing biosorption capacity of Saccharomyces cerevisiae through acid treatment. Desalination, 264, 102–107.

    Article  Google Scholar 

  9. Cheng, J., Zhan, C., Wu, J., Cui, Z., Si, J., Wang, Q., et al. (2020). Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega, 5(10), 5389–5400.

    Article  Google Scholar 

  10. de Oliveira, G. R., Fernandes, N. S., de Melo, J. V., Da Silva, D. R., Urgeghe, C., & Martínez-Huitle, C. A. (2011). Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chemical Engineering Journal, 168(1), 208–214.

    Article  Google Scholar 

  11. Park, K. T., Kang, Y. T., Yang, S. G., Zhao, W. B., Kang, Y. S., Im, S. J., et al. (2020). Cyber physical energy system for saving energy of the dyeing process with industrial internet of things and manufacturing big data. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 219–238.

    Article  Google Scholar 

  12. Korea Institute for Industrial Economics Trade. (2002). The Study on the evaluation of energy consumption and process renovation for energy saving in dyeing mills. (TRKO201800020968). Korea Institute for Industrial Economics Trade Research Report. https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201800020968

    Google Scholar 

  13. Haddar, W., Elksibi, I., Meksi, N., & Mhenni, M. F. (2014). Valorization of the leaves of fennel (Foeniculum vulgare) as natural dyes fixed on modified cotton: A dyeing process optimization based on a response surface methodology. Industrial Crops and Products, 52, 588–596.

    Article  Google Scholar 

  14. Kharisma, A., Murphiyanto, R. D. J., Perdana, M. K., & Kasih, T. P. (2017, December). Application of Taguchi method and ANOVA in the optimization of dyeing process on cotton knit fabric to reduce re-dyeing process. IOP Conference Series: Earth and Environmental Science, 109(1), 012023. https://doi.org/10.1088/1755-1315/109/1/012023

    Article  Google Scholar 

  15. Wu, S., Peng, L., Fu, F., Feng, Y., He, J., & Wang, H. (2023). Response surface methodology approach for dyeing process optimization of Ayous (Triplochiton scleroxylon) wood with acid dye. European Journal of Wood and Wood Products, 81(4), 1045–1058. https://doi.org/10.1007/s00107-023-01939-2

    Article  Google Scholar 

  16. Rade, K. A., Pharande, V. A., & Saini, D. R. (2017). Effect of changes in process parameters on energy consumption during textile dyeing process. International Journal of Theoretical and Applied Mechanics, 12(3), 579–588. https://www.researchgate.net/profile/Kuldip-Patil-Rade/publication/362520316_Effect_of_Change_in_Process_Parameters_on_Energy_Consumption_during_Textile_Dyeing_Process/links/62ee4ed30b37cc344775d842/Effect-of-Change-in-Process-Parameters-on-Energy-Consumption-during-Textile-Dyeing-Process.pdf

    Google Scholar 

  17. Park, K. T., Im, S. J., Kang, Y.-S., Noh, S. D., Kang, Y. T., & Yang, S. G. (2019). Service-oriented Platform for Smart Operation of Dyeing and Finishing Industry. International Journal of Computer Integrated Manufacturing, 32(3), 307–326.

    Article  Google Scholar 

  18. Park, K. T., Kang, Y.-S., Im, S. J., Noh, S. D., Yang, S. G., & Kang, Y. T. (2019). Implementation of Digital Twin and Virtual Representation for Energy Efficiency Improvement of Dyeing and Finishing Industry. Journal of the Korean Institute of Industrial Engineers., 45(6), 042–054.

    Article  Google Scholar 

  19. Park, K. T., Im, S. J., Kang, Y.-S., Noh, S. D., Yang, S. G., Kang, Y. T., Kim, D. H., & Choi, S. Y. (2018). The Configuration and Utilization of Digital Twin for the Energy Efficiency Improvement of the Dyeing and Finishing Shop". Korean Journal of Computational Design and Engineering, 23(4), 329–341.

    Article  Google Scholar 

  20. Park, K. T., Yang, S. G., Park, H. J., Zhao, W. B., Kang, Y. S., Noh, S. D., Kim, D. H., Choi, S. Y., & Kang, Y. T. (2017). A Study on Utilization of Manufacturing Big Data for Energy Efficiency of Dyeing-Finishing Industry”. Korean Journal of Computational Design and Engineering, 22(4), 435–444.

    Article  Google Scholar 

  21. Korea Institute of Industrial Technology. (1995). Strategies for the development of dye processing in the 2000s. (TRKO200200051407). Korea Institute of Industrial Technology Research Report. https://sejong.nl.go.kr/search/searchDetail.do?rec_key=SH1_KMO201624619&menuId=

    Google Scholar 

  22. Svinth, C. N., Wallace, S., Stephenson, D. B., Kim, D., Shin, K., Kim, H. Y., et al. (2022). Identifying abnormal CFRP holes using both unsupervised and supervised learning techniques on in-process force, current, and vibration signals. International Journal of Precision Engineering and Manufacturing, 23(6), 609–625.

    Article  Google Scholar 

  23. Ren, Z., Fang, F., Yan, N., & Wu, Y. (2022). State of the art in defect detection based on machine vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(2), 661–691.

    Article  Google Scholar 

  24. Alam, G., Ihsanullah, I., Naushad, M., & Sillanpää, M. (2022). Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chemical Engineering Journal, 427, 130011.

    Article  Google Scholar 

  25. Yun, H., Kim, E., Kim, D. M., Park, H. W., & Jun, M. B. G. (2023). Machine learning for object recognition in manufacturing applications. International Journal of Precision Engineering and Manufacturing, 24(4), 683–712.

    Article  Google Scholar 

  26. de Morais, M. V. B., dos Santos, S. D., & Pires, R. (2023). A computer vision system for pallets verification in quality control. International Journal of Precision Engineering and Manufacturing, 24(7), 1221–1234.

    Article  Google Scholar 

  27. Mostaghimi, H., Park, S. S., Lee, D. Y., Nam, S., & Nam, E. (2023). Prediction of tool tip dynamics through machine learning and inverse receptance coupling. International Journal of Precision Engineering and Manufacturing, 24(10), 1739–1752.

    Article  Google Scholar 

  28. Kim, J., & Lee, J. Y. (2023). Development of a quality prediction algorithm for an injection molding process considering cavity sensor and vibration data. International Journal of Precision Engineering and Manufacturing, 24(6), 901–914.

    Article  Google Scholar 

  29. Chang, D., Shi, H., Han, C., & Meng, F. (2023). Research on Production Scheduling Optimization of Flexible Job Shop Production with Buffer Capacity Limitation Based on the Improved Gene Expression Programming Algorithm. International Journal of Precision Engineering and Manufacturing, 24(12), 2317–2336.

    Article  Google Scholar 

  30. Anaraki, M. V., Farzin, S., Mousavi, S. F., & Karami, H. (2021). Uncertainty analysis of climate change impacts on flood frequency by using hybrid machine learning methods. Water Resources Management, 35, 199–223.

    Article  Google Scholar 

  31. Azad, A., Farzin, S., Sanikhani, H., Karami, H., Kisi, O., & Singh, V. P. (2021). Approaches for optimizing the performance of adaptive neuro-fuzzy inference system and least-squares support vector machine in precipitation modeling. Journal of Hydrologic Engineering, 26(4), 04021010.

    Article  Google Scholar 

  32. Chen, H. Y., Chen, J. Q., Li, J. Y., Huang, H. J., Chen, X., Zhang, H. Y., & Chen, C. Y. C. (2019). Deep learning and random forest approach for finding the optimal traditional chinese medicine formula for treatment of alzheimer’s disease. Journal of Chemical Information and Modeling, 59(4), 1605–1623.

    Article  Google Scholar 

  33. Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of hydrology, 572, 336–351.

    Article  Google Scholar 

  34. Akakuru, O. C., Adakwa, C. B., Ikoro, D. O., Eyankware, M. O., Opara, A. I., Njoku, A. O., et al. (2023). Application of artificial neural network and multi-linear regression techniques in groundwater quality and health risk assessment around Egbema, Southeastern Nigeria. Environmental Earth Sciences, 82(3), 77.

    Article  Google Scholar 

  35. Zhu, X., Wang, X., & Ok, Y. S. (2019). The application of machine learning methods for prediction of metal sorption onto biochars. Journal of Hazardous Materials, 378, 120727.

    Article  Google Scholar 

  36. Biau, G., Cadre, B., & Rouvìère, L. (2019). Accelerated gradient boosting. Machine learning, 108, 971–992.

    Article  Google Scholar 

  37. Lee, S. H., & Park, K. P. (2023). Development of a Prediction Model for the Gear Whine Noise of Transmission Using Machine Learning. International Journal of Precision Engineering and Manufacturing, 24(10), 1793–1803.

    Article  Google Scholar 

  38. Zhang, Y., & Haghani, A. (2015). A gradient boosting method to improve travel time prediction. Transportation Research Part C: Emerging Technologies, 58, 308–324.

    Article  Google Scholar 

  39. Bøhn, E., Gros, S., Moe, S., & Johansen, T. A. (2023). Optimization of the model predictive control meta-parameters through reinforcement learning. Engineering Applications of Artificial Intelligence, 123, 106211.

    Article  Google Scholar 

  40. Spielberg, S., Tulsyan, A., Lawrence, N. P., Loewen, P. D., & Bhushan Gopaluni, R. (2019). Toward self-driving processes: A deep reinforcement learning approach to control. AIChE journal, 65(10), e16689.

    Article  Google Scholar 

  41. Petsagkourakis, P., Sandoval, I. O., Bradford, E., Zhang, D., & del Rio-Chanona, E. A. (2020). Reinforcement learning for batch bioprocess optimization. Computers & Chemical Engineering, 133, 106649.

    Article  Google Scholar 

  42. Kim, Y. M., Shin, S. J., & Cho, H. W. (2022). Predictive modeling for machining power based on multi-source transfer learning in metal cutting. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(1), 107–125. https://doi.org/10.1007/s40684-021-00327-6

    Article  Google Scholar 

  43. Miao, X., Zhao, H., Gao, B., Wu, T., & Hou, Y. (2022). Vibration reduction control of in-pipe intelligent isolation plugging tool based on deep reinforcement learning. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(6), 1477–1491.

    Article  Google Scholar 

  44. Li, W., Ye, J., Cui, Y., Kim, N., Cha, S. W., & Zheng, C. (2022). A speedy reinforcement learning-based energy management strategy for fuel cell hybrid vehicles considering fuel cell system lifetime. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–14. https://doi.org/10.1007/s40684-021-00379-8

  45. Liu, N., Zhang, Y. F., & Lu, W. F. (2019). Improving energy efficiency in discrete parts manufacturing system using an ultra-flexible job shop scheduling algorithm. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 349–365.

    Article  Google Scholar 

  46. Wang, L., Pan, Z., & Wang, J. (2021). A review of reinforcement learning based intelligent optimization for manufacturing scheduling. Complex System Modeling and Simulation, 1(4), 257–270.

    Article  Google Scholar 

  47. Huang, H. H., Cheng, C. K., Chen, Y. H., & Tsai, H. Y. (2023). The Robotic Arm Velocity Planning Based on Reinforcement Learning. International Journal of Precision Engineering and Manufacturing, 24(9), 1707–1721.

    Article  Google Scholar 

  48. Wei, L., Li, Y., Ai, Y., Wu, Y., Xu, H., Wang, W., & Hu, G. (2023). Learning Multiple-Gait Quadrupedal Locomotion via Hierarchical Reinforcement Learning. International Journal of Precision Engineering and Manufacturing, 24(9), 1599–1613.

    Article  Google Scholar 

  49. Nguyen, H., & La, H. (2019, February). Review of deep reinforcement learning for robot manipulation. In 2019 Third IEEE international conference on robotic computing (IRC) (pp. 590–595). IEEE. https://doi.org/10.1109/IRC.2019.00120

    Chapter  Google Scholar 

  50. Barrett, T., Clements, W., Foerster, J., & Lvovsky, A. (2020, April). Exploratory combinatorial optimization with reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 3243–3250.

    Article  Google Scholar 

  51. Menon, R. (2020, February). Investigation of energy management and optimization using penalty based reinforcement learning algorithms for textile industry. In 2020 international conference on innovative trends in information technology (ICITIIT) (pp. 1–8). IEEE.

    Google Scholar 

  52. Wu, T., Zhao, H., Gao, B., & Meng, F. (2021). Energy-saving for a velocity control system of a pipe isolation tool based on a reinforcement learning method. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–16. https://doi.org/10.1007/s40684-021-00309-8

  53. Zheng, C., Li, W., Li, W., Xu, K., Peng, L., & Cha, S. W. (2022). A deep reinforcement learning-based energy management strategy for fuel cell hybrid buses. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(3), 885–897.

    Article  Google Scholar 

  54. Cheng, Z., Zhao, Q., Wang, F., Jiang, Y., Xia, L., & Ding, J. (2016). Satisfaction based Q-learning for integrated lighting and blind control. Energy and Buildings, 127, 43–55.

    Article  Google Scholar 

  55. Chin, Y. K., Lee, L. K., Bolong, N., Yang, S. S., & Teo, K. T. K. (2011, July). Exploring Q-learning optimization in traffic signal timing plan management. In 2011 third international conference on computational intelligence, communication systems and networks (pp. 269–274). IEEE. https://doi.org/10.1109/CICSyN.2011.64

    Chapter  Google Scholar 

  56. Xi, B., & Lei, D. (2022). Q-learning-based teaching-learning optimization for distributed two-stage hybrid flow shop scheduling with fuzzy processing time. Complex System Modeling and Simulation, 2(2), 113–129.

    Article  Google Scholar 

  57. Huynh, T. N., Do, D. T., & Lee, J. (2021). Q-Learning-based parameter control in differential evolution for structural optimization. Applied Soft Computing, 107, 107464.

    Article  Google Scholar 

  58. Kosunalp, S. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access, 4, 5755–5763.

    Article  Google Scholar 

  59. Tesauro, G., & Kephart, J. O. (2002). Pricing in agent economies using multi-agent Q-learning. Autonomous agents and multi-agent systems, 5, 289–304.

    Article  Google Scholar 

  60. Bhagat, S. K., Pilario, K. E., Babalola, O. E., Tiyasha, T., Yaqub, M., Onu, C. E., et al. (2023). Comprehensive review on machine learning methodologies for modeling dye removal processes in wastewater. Journal of Cleaner Production, 385, 135522.

    Article  Google Scholar 

  61. Moosavi, S., Manta, O., El-Badry, Y. A., Hussein, E. E., El-Bahy, Z. M., Mohd Fawzi, N. F. B., ... & Moosavi, S. M. H. (2021). A study on machine learning methods’ application for dye adsorption prediction onto agricultural waste activated carbon. Nanomaterials, 11(10), 2734.

  62. Chianeh, F. N., Anaraki, M. V., Mahmoudian, F., & Farzin, S. (2024). A new methodology for the prediction of optimal conditions for dyes’ electrochemical removal; Application of copula function, machine learning, deep learning, and multi-objective optimization. Process Safety and Environmental Protection, 182, 298–313.

    Article  Google Scholar 

  63. He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Yi, C. (2022). Multi-objective optimization of the textile manufacturing process using deep-Q-network based multi-agent reinforcement learning. Journal of Manufacturing Systems, 62, 939–949.

    Article  Google Scholar 

  64. Majumdar, A., Singh, S. P., & Ghosh, A. (2011). Modelling, optimization and decision making techniques in designing of functional clothing. Indian Journal of Fibre & Textile Research (IJFTR), 36(4), 398–409. http://nopr.niscpr.res.in/handle/123456789/13234

    Google Scholar 

  65. He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Yi, C. (2021). A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process. Computers in Industry, 125, 103373.

    Article  Google Scholar 

  66. Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic programming. Artificial intelligence, 72(1–2), 81–138.

    Article  Google Scholar 

  67. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press. http://incompleteideas.net/book/RLbook2020.pdf

    Google Scholar 

  68. Wiering, M. A., & Van Otterlo, M. (2012). Reinforcement learning. Adaptation, learning, and optimization, 12(3), 729.

    Google Scholar 

  69. Chakraborty, S., Chatterjee, P., & Das, P. P. (2019). Cotton fabric selection using a Grey Fuzzy relational analysis approach. Journal of the Institution of Engineers (India): Series E, 100, 21–36. https://doi.org/10.1007/s40034-018-0130-7

    Article  Google Scholar 

  70. Nanduri, V., & Das, T. K. (2007). A reinforcement learning model to assess market power under auction-based energy pricing. IEEE Transactions on Power Systems, 22(1), 85–95.

    Article  Google Scholar 

  71. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8, 279–292.

    Google Scholar 

  72. Hu, J., Wang, Y., Pang, Y., & Liu, Y. (2022). Optimal maintenance scheduling under uncertainties using Linear Programming-enhanced Reinforcement Learning. Engineering Applications of Artificial Intelligence, 109, 104655.

    Article  Google Scholar 

  73. Qambar, A. S., & Al Khalidy, M. M. M. (2023). Development of local and global wastewater biochemical oxygen demand real-time prediction models using supervised machine learning algorithms. Engineering Applications of Artificial Intelligence, 118, 105709.

    Article  Google Scholar 

  74. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232. http://www.jstor.org/stable/2699986

  75. Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 39(3), 3659–3667.

    Article  MathSciNet  Google Scholar 

  76. Zhang, Z., Zhao, Y., Canes, A., Steinberg, D., & Lyashevska, O. (2019). Predictive analytics with gradient boosting in clinical medicine. Annals of Translational Medicine, 7(7). https://doi.org/10.21037/atm.2019.03.29

  77. Chakraborty, D., Elhegazy, H., Elzarka, H., & Gutierrez, L. (2020). A novel construction cost prediction model using hybrid natural and light gradient boosting. Advanced Engineering Informatics, 46, 101201.

    Article  Google Scholar 

  78. DYETEC Hompage,https://www.dyetec.or.kr/support/use.php, last accessed 2023/10/03.

  79. Kubelka, P. (1931). Ein beitrag zur optik der farbanstriche. Zeitschrift für Technische Physik, 12, 593–601.

    Google Scholar 

  80. Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of categorical variable encoding techniques for neural network classifiers. International journal of computer applications, 175(4), 7–9.

    Article  Google Scholar 

  81. Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557. https://cir.nii.ac.jp/crid/1380567187556110598

    Google Scholar 

  82. Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of machine learning. Springer Science & Business Media. https://pzs.dstu.dp.ua/DataMining/bibl/Encyclopedia%20Machine%20Learning%202011.pdf

    Google Scholar 

  83. Vulcanic Hompage,https://www.vulcanic.com/en/calculations/to-calculate-heating-power/heating-volume-liquid/, last accessed 2024/3/12.

Download references

Acknowledgements

This research was supported by the MOTIE (Ministry of Trade, Industry and Energy), Korea, under the Virtual Engineering Service Platform program (P0022335) supervised by the Korea Institute for Advanced Technology (KIAT), and by the SungKyunKwan University and the BK21 FOUR (Graduate School Innovation) funded by the MOE (Ministry of Education), Korea and National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Do Noh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Sajadieh, S.M.M., Choi, H.K. et al. Application of Reinforcement Learning to Dyeing Processes for Residual Dye Reduction. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00627-7

Keywords

Navigation