Skip to main content
Log in

Abstract

Triboelectric nanogenerators (TENGs) have special characteristics that can boost the Internet of Things (IoT) development in various industries toward realizing a smart world. Herein, first, the history of TENGs and their applications are discussed. Then, the unique characteristics and positive attributes of TENG that differentiate it from other generators and nanogenerators are elucidated based on the working mode and application, with a focus on the role of TENGs in supporting renewable energy. Triboelectrification occurs due to the interatomic interactions between the surfaces with relative movements. Since triboelectrification can occur between any two materials at different triboelectric series, it results in a highly cost-effective and eco-friendly energy harvesting method. Hence, TENGs can be applied multifariously, ranging from at the nanoscale in highly sensitive self-powered sensors to a large scale for obtaining the dissipated daily energy of the ocean or signals in harsh environmental conditions. Triboelectrification mechanism based on interatomic interactions and other important parameters is discussed. Additionally, the efficiency of TENG, including the mechanical performance of the system and triboelectrification phenomenon, from both energy harvesting and energy transfer systems, together with the vital influential parameter of surface charge density is illustrated. Consequently, main feature of TENG is illustrated to give a significant view to the TENG researchers to select an appropriate working mode of the TENG based on the application, working conditions, and unique characteristics. Finally, the vital challenges of TENGs are discussed to broaden its scope of research, enhance its applicability performance in the direction of the smart world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that supports the findings of this research are available and can be accessed upon request. Please contact the authors for data inquiries.

References

  1. Yang, W., Chen, J., Jing, Q., Yang, J., Wen, X., Su, Y., & Wang, Z. L. (2014). 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Advanced Functional Materials, 24(26), 4090–4096. https://doi.org/10.1002/adfm.201304211.

    Article  Google Scholar 

  2. Pourrahimi, A. M., Olsson, R. T., & Hedenqvist, M. S. (2018). The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Advanced Materials, 30(4), 1703624. https://doi.org/10.1002/adma.201703624.

    Article  Google Scholar 

  3. Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001.

    Article  Google Scholar 

  4. Wang, Y., Matin Nazar, A., Wang, J., Xia, K., Wang, D., Ji, X., & Jiao, P. (2022). Rolling spherical triboelectric nanogenerators (RS-TENG) under low-frequency ocean wave action. Journal of Marine Science and Engineering, 10(1), 5. https://doi.org/10.3390/jmse10010005.

    Article  Google Scholar 

  5. Feng, Y., Zhang, L., Zheng, Y., Wang, D., Zhou, F., & Liu, W. (2019). Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy, 55, 260–268. https://doi.org/10.1016/j.nanoen.2018.10.07.

    Article  Google Scholar 

  6. Liu, D., Zhou, L., Wang, Z. L., & Wang, J. (2021). Triboelectric nanogenerator: From alternating current to direct current. Iscience, 24(1), 102018. https://doi.org/10.1016/j.isci.2020.102018.

    Article  Google Scholar 

  7. Dray, P. (2005). Stealing God’s thunder: Benjamin Franklin’s lightning rod and the invention of America. New York: Random House Trade Paperbacks.

    Google Scholar 

  8. Mangeney, A., Califano, F., Cavazzoni, C., & Travnicek, P. (2002). A numerical scheme for the integration of the Vlasov-Maxwell system of equations. Journal of Computational Physics, 179(2), 495–538. https://doi.org/10.1006/jcph.2002.7071.

    Article  MathSciNet  MATH  Google Scholar 

  9. Tarun, A. (2019). Maxwell’s equations: Gauss’ law, Faraday’s law, and Ampere’s law. Retrieved from https://www.elprocus.com/maxwells-equations-gauss-lawfaradays-law-and-amperes-law/.

  10. Kathy, J. (2022) Maxwell’s equations explained: Supplement to the history of Maxwell’s equation. Retrieved from https://kathylovesphysics.com/maxwells-equations-explained/?utm_source=rss&utm_medium=rss&utm_campaign=maxwells-equations-explained.

  11. Furfari, F. A. (2005). A history of the Van de Graaff generator. IEEE Industry Applications Magazine, 11(1), 10–14. https://doi.org/10.1109/MIA.2005.1380320.

    Article  Google Scholar 

  12. Khalid, R., Shaheen, S., & Javed, A. (2018). Van de Graaff generator–A cost effective solution. In 2018 International conference on power generation systems and renewable energy technologies (PGSRET) (pp. 1–6). IEEE. https://doi.org/10.1109/PGSRET.2018.8685983.

  13. Beeby, S. P., Torah, R. N., Tudor, M. J., Glynne-Jones, P., O’Donnell, T., Saha, C. R., & Roy, S. (2007). A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 17(7), 1257. https://doi.org/10.1088/0960-1317/17/7/007.

    Article  Google Scholar 

  14. Zhu, G., Yang, R., Wang, S., & Wang, Z. L. (2010). Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters, 10(8), 3151–3155. https://doi.org/10.1021/nl101973h.

    Article  Google Scholar 

  15. Suzuki, Y., Miki, D., Edamoto, M., & Honzumi, M. (2010). A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. Journal of Micromechanics and Microengineering, 20(10), 104002. https://doi.org/10.1088/0960-1317/20/10/104002.

    Article  Google Scholar 

  16. Xu, S., Hansen, B. J., & Wang, Z. L. (2010). Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 1(1), 93. https://doi.org/10.1038/ncomms1098.

    Article  Google Scholar 

  17. Korkmaz, S., & Kariper, İA. (2021). Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy, 84, 105888. https://doi.org/10.1016/j.nanoen.2021.105888.

    Article  Google Scholar 

  18. Han, S. A., Lee, J., Lin, J., Kim, S. W., & Kim, J. H. (2019). Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy, 57, 680–691. https://doi.org/10.1016/j.nanoen.2018.12.081.

    Article  Google Scholar 

  19. Glor, M. (2005). Electrostatic ignition hazards in the process industry. Journal of Electrostatics, 63(6–10), 447–453. https://doi.org/10.1016/j.elstat.2005.03.001.

    Article  Google Scholar 

  20. Nifuku, M., & Katoh, H. (2003). A study on the static electrification of powders during pneumatic transportation and the ignition of dust cloud. Powder Technology, 135, 234–242. https://doi.org/10.1016/S0032-5910(03)00163-3.

    Article  Google Scholar 

  21. Eckhoff, R. K., & Li, G. (2021). Industrial dust explosions. A brief review. . Applied Sciences, 11(4), 1669. https://doi.org/10.3390/app11041669.

    Article  Google Scholar 

  22. McCarty, L. S., & Whitesides, G. M. (2008). Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angewandte Chemie International Edition, 47(12), 2188–2207. https://doi.org/10.1002/anie.200701812.

    Article  Google Scholar 

  23. (2020). Static electricity can cause 3 types of damage in electronic component. Retrieved from https://circuitsbyus.com/static-electricity-can-cause-3-types-of-damage-in-electronic-components/.

  24. Fan, F. R., Tian, Z. Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328–334. https://doi.org/10.1016/j.nanoen.2012.01.004.

    Article  Google Scholar 

  25. Han, S., Kim, J., & Ko, S. H. (2021). Advances in air filtration technologies: Structure-based and interaction-based approaches. Materials Today Advances, 9, 100134. https://doi.org/10.1016/j.mtadv.2021.100134.

    Article  Google Scholar 

  26. Van Oss, C. J., Good, R. J., & Chaudhury, M. K. (1988). Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir, 4(4), 884–891.

    Article  Google Scholar 

  27. Pritchard, H. O., & Skinner, H. A. (1955). The concept of electronegativity. Chemical Reviews, 55(4), 745–786.

    Article  Google Scholar 

  28. Wu, C., Wang, A. C., Ding, W., Guo, H., & Wang, Z. L. (2019). Triboelectric nanogenerator: A foundation of the energy for the new era. Advanced Energy Materials, 9(1), 1802906. https://doi.org/10.1002/aenm.201802906.

    Article  Google Scholar 

  29. Burgo, T. A., Ducati, T. R., Francisco, K. R., Clinckspoor, K. J., Galembeck, F., & Galembeck, S. E. (2012). Triboelectricity: Macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir, 28(19), 7407–7416. https://doi.org/10.1021/la301228j.

    Article  Google Scholar 

  30. Pandey, R. K., Kakehashi, H., Nakanishi, H., & Soh, S. (2018). Correlating material transfer and charge transfer in contact electrification. The Journal of Physical Chemistry C, 122(28), 16154–16160. https://doi.org/10.1021/acs.jpcc.8b04357.

    Article  Google Scholar 

  31. Wang, Z. L., & Wang, A. C. (2019). On the origin of contact-electrification. Materials Today, 30, 34–51. https://doi.org/10.1016/j.mattod.2019.05.016.

    Article  Google Scholar 

  32. Xu, C., Zi, Y., Wang, A. C., Zou, H., Dai, Y., He, X., & Wang, Z. L. (2018). On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 30(15), 1706790. https://doi.org/10.1002/adma.201706790.

    Article  Google Scholar 

  33. Xu, C., Wang, A. C., Zou, H., Zhang, B., Zhang, C., Zi, Y., & Wang, Z. L. (2018). Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Advanced Materials, 30(38), 1803968. https://doi.org/10.1002/adma.201803968.

    Article  Google Scholar 

  34. Zhou, Y. S., Liu, Y., Zhu, G., Lin, Z. H., Pan, C., Jing, Q., & Wang, Z. L. (2013). In situ quantitative study of nanoscale triboelectrification and patterning. Nano Letters, 13(6), 2771–2776. https://doi.org/10.1021/nl401006x.

    Article  Google Scholar 

  35. Zhou, Y. S., Wang, S., Yang, Y., Zhu, G., Niu, S., Lin, Z. H., & Wang, Z. L. (2014). Manipulating nanoscale contact electrification by an applied electric field. Nano Letters, 14(3), 1567–1572. https://doi.org/10.1021/nl404819w.

    Article  Google Scholar 

  36. Castle, G. S. P., & Schein, L. B. (1995). General model of sphere-sphere insulator contact electrification. Journal of Electrostatics, 36(2), 165–173. https://doi.org/10.1016/0304-3886(95)00043-7.

    Article  Google Scholar 

  37. Xu, C., Zhang, B., Wang, A. C., Zou, H., Liu, G., Ding, W., & Wang, Z. L. (2019). Contact-electrification between two identical materials: Curvature effect. ACS Nano, 13(2), 2034–2041. https://doi.org/10.1021/acsnano.8b08533.

    Article  Google Scholar 

  38. Nie, J., Wang, Z., Ren, Z., Li, S., Chen, X., & Lin Wang, Z. (2019). Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 10(1), 2264. https://doi.org/10.1038/s41467-019-10232-x.

    Article  Google Scholar 

  39. Lin, S., Xu, L., Xu, C., Chen, X., Wang, A. C., Zhang, B., & Wang, Z. L. (2019). Electron transfer in nanoscale contact electrification: Effect of temperature in the metal–dielectric case. Advanced Materials, 31(17), 1808197. https://doi.org/10.1002/adma.201808197.

    Article  Google Scholar 

  40. Torrens, I. (2012). Interatomic potentials. Elsevier.

    Google Scholar 

  41. Margenau, H. (1939). Van der Waals forces. Reviews of Modern Physics, 11(1), 1. https://doi.org/10.1103/RevModPhys.11.1.

    Article  MATH  Google Scholar 

  42. Zou, H., Guo, L., Xue, H., Zhang, Y., Shen, X., Liu, X., & Wang, Z. L. (2020). Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 11(1), 2093. https://doi.org/10.1038/s41467-020-15926-1.

    Article  Google Scholar 

  43. Fowle, F. E. (1921). Smithsonian physical tables (Vol. 2539). Smithsonian Institution.

    MATH  Google Scholar 

  44. Henniker, J. (1962). Triboelectricity in polymers. Nature, 196, 474–474.

    Article  Google Scholar 

  45. Zou, H., Zhang, Y., Guo, L., Wang, P., He, X., Dai, G., & Wang, Z. L. (2019). Quantifying the triboelectric series. Nature Communications, 10(1), 1427. https://doi.org/10.1038/s41467-019-09461-x.

    Article  Google Scholar 

  46. Song, Y., Wang, N., Wang, Y., Zhang, R., Olin, H., & Yang, Y. (2020). DC-TENGs: Direct current triboelectric nanogenerators. Advanced Energy Materials, 10(45), 2070186. https://doi.org/10.1002/aenm.202070186.

    Article  Google Scholar 

  47. Rodrigues, C., Gomes, A., Ghosh, A., Pereira, A., & Ventura, J. (2019). Power-generating footwear based on a triboelectric-electromagnetic-piezoelectric hybrid nanogenerator. Nano Energy, 62, 660–666. https://doi.org/10.1016/j.nanoen.2019.05.063.

    Article  Google Scholar 

  48. Singh, H. H., & Khare, N. (2018). Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy, 51, 216–222. https://doi.org/10.1016/j.nanoen.2018.06.055.

    Article  Google Scholar 

  49. Xu, W., Zheng, H., Liu, Y., Zhou, X., Zhang, C., Song, Y., & Wang, Z. (2020). A droplet-based electricity generator with high instantaneous power density. Nature, 578(7795), 392–396. https://doi.org/10.1038/s41586-020-1985-6.

    Article  Google Scholar 

  50. Wei, X., Zhao, Z., Zhang, C., Yuan, W., Wu, Z., Wang, J., & Wang, Z. L. (2021). All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano, 15(8), 13200–13208. https://doi.org/10.1021/acsnano.1c02790.

    Article  Google Scholar 

  51. Xu, S., Feng, Y., Liu, Y., Wu, Z., Zhang, Z., Feng, M., & Wang, D. (2021). Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy, 85, 106023. https://doi.org/10.1016/j.nanoen.2021.106023.

    Article  Google Scholar 

  52. Fu, J., Xu, G., Wu, H., Li, C., & Zi, Y. (2022). Liquid-interfaces-based triboelectric nanogenerator: an emerging power generation method from liquid-energy nexus. Advanced Energy and Sustainability Research, 3(9), 2200051. https://doi.org/10.1002/aesr.202200051.

    Article  Google Scholar 

  53. Gauthier, M., Carney, T. J., Grimaud, A., Giordano, L., Pour, N., Chang, H. H., & Shao-Horn, Y. (2015). Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights. The Journal of Physical Chemistry Letters, 6(22), 4653–4672. https://doi.org/10.1021/acs.jpclett.5b01727.

    Article  Google Scholar 

  54. Yu, X., & Manthiram, A. (2018). Electrode–electrolyte interfaces in lithium-based batteries. Energy & Environmental Science, 11(3), 527–543. https://doi.org/10.1039/C7EE02555F.

    Article  Google Scholar 

  55. Xu, L., Tang, S., Cheng, Y., Wang, K., Liang, J., Liu, C., & Mai, L. (2018). Interfaces in solid-state lithium batteries. . Joule, 2(10), 1991–2015. https://doi.org/10.1016/j.joule.2018.07.009.

    Article  Google Scholar 

  56. Wu, B., Wang, S., Evans, W. J., IV., Deng, D. Z., Yang, J., & Xiao, J. (2016). Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. Journal of Materials Chemistry A, 4(40), 15266–15280. https://doi.org/10.1039/C6TA05439K.

    Article  Google Scholar 

  57. Nolan, A. M., Zhu, Y., He, X., Bai, Q., & Mo, Y. (2018). Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule, 2(10), 2016–2046. https://doi.org/10.1016/j.joule.2018.08.017

    Article  Google Scholar 

  58. Dong, Y., Xu, S., Zhang, C., Zhang, L., Wang, D., Xie, Y., & Wang, Z. L. (2022). Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Science Advances, 8(48), eadd0464. https://doi.org/10.1126/sciadv.add0464.

    Article  Google Scholar 

  59. Diaz, A. F., & Felix-Navarro, R. M. (2004). A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 62(4), 277–290. https://doi.org/10.1016/j.elstat.2004.05.005.

    Article  Google Scholar 

  60. Smoluchowski, R. (1941). Anisotropy of the electronic work function of metals. Physical Review, 60(9), 661. https://doi.org/10.1103/PhysRev.60.661.

    Article  MATH  Google Scholar 

  61. Lany, S., Osorio-Guillén, J., & Zunger, A. (2007). Origins of the doping asymmetry in oxides: Hole doping in NiO versus electron doping in ZnO. Physical Review B, 75(24), 241203. https://doi.org/10.1103/PhysRevB.75.241203.

    Article  Google Scholar 

  62. Henrich, V. E., & Cox, P. A. (1994). The surface science of metal oxides. Cambridge University Press.

    Google Scholar 

  63. Cheng, X., Miao, L., Song, Y., Su, Z., Chen, H., Chen, X., & Zhang, H. (2017). High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy, 38, 438–446. https://doi.org/10.1016/j.nanoen.2017.05.063.

    Article  Google Scholar 

  64. Wang, Y., Jin, X., Wang, W., Niu, J., Zhu, Z., & Lin, T. (2021). Efficient triboelectric nanogenerator (TENG) output management for improving charge density and reducing charge loss. ACS Applied Electronic Materials, 3(2), 532–549. https://doi.org/10.1021/acsaelm.0c00890.

    Article  Google Scholar 

  65. Lin, L., Xie, Y., Niu, S., Wang, S., Yang, P. K., & Wang, Z. L. (2015). Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of∼ 55%. ACS Nano, 9(1), 922–930. https://doi.org/10.1021/nn506673x.

    Article  Google Scholar 

  66. Tang, W., Jiang, T., Fan, F. R., Yu, A. F., Zhang, C., Cao, X., & Wang, Z. L. (2015). Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials, 25(24), 3718–3725. https://doi.org/10.1002/adfm.201501331.

    Article  Google Scholar 

  67. Zi, Y., Niu, S., Wang, J., Wen, Z., Tang, W., & Wang, Z. L. (2015). Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 6(1), 8376. https://doi.org/10.1038/ncomms9376.

    Article  Google Scholar 

  68. Kim, W. G., Kim, D. W., Tcho, I. W., Kim, J. K., Kim, M. S., & Choi, Y. K. (2021). Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano, 15(1), 258–287. https://doi.org/10.1021/acsnano.0c09803.

    Article  Google Scholar 

  69. Niu, S., Wang, X., Yi, F., Zhou, Y. S., & Wang, Z. L. (2015). A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nature Communications, 6(1), 8975. https://doi.org/10.1038/ncomms9975.

    Article  Google Scholar 

  70. Ibrahim, M., Jiang, J., Wen, Z., & Sun, X. (2021). Surface engineering for enhanced triboelectric nanogenerator. Nanoenergy Advances, 1(1), 58–80. https://doi.org/10.3390/nanoenergyadv1010004.

    Article  Google Scholar 

  71. Rotsch, C., & Radmacher, M. (1997). Mapping local electrostatic forces with the atomic force microscope. Langmuir, 13(10), 2825–2832. https://doi.org/10.1021/la960874s.

    Article  Google Scholar 

  72. Luo, Y., Yu, M., Zhang, Y., Wang, Y., Long, L., Tan, H., & Xu, J. (2022). Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel. Nano Energy, 104, 107955. https://doi.org/10.1016/j.nanoen.2022.107955.

    Article  Google Scholar 

  73. Liu, S., Li, Y., Guo, W., Huang, X., Xu, L., Lai, Y. C., & Wu, H. (2019). Triboelectric nanogenerators enabled sensing and actuation for robotics. Nano Energy, 65, 104005. https://doi.org/10.1016/j.nanoen.2019.104005.

    Article  Google Scholar 

  74. Futurenautics. (2022). Harvesting blue energy: Triboelectric nanogenerators. Retrieved December, 2022, from https://www.futurenautics.com/2022/07/harvesting-blue-energy-triboelectric-nanogenerators/.

  75. Wen, H., Yang, P., Liu, G., Xu, S., Yao, H., Li, W., & Wan, L. (2022). Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy, 93, 106796. https://doi.org/10.1016/j.nanoen.2021.106796.

    Article  Google Scholar 

  76. Abdin, Z., Alim, M. A., Saidur, R., Islam, M. R., Rashmi, W., Mekhilef, S., & Wadi, A. (2013). Solar energy harvesting with the application of nanotechnology. Renewable and Sustainable Energy Reviews, 26, 837–852.

    Article  Google Scholar 

  77. Li, S., Yuan, J., & Lipson, H. (2011). Ambient wind energy harvesting using cross-flow fluttering. Journal of Applied Physics. https://doi.org/10.1063/1.3525045.

    Article  Google Scholar 

  78. Tan, Y. K., & Panda, S. K. (2010). Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes. IEEE Transactions on Power Electronics, 26(1), 38–50. https://doi.org/10.1109/TPEL.2010.2056700.

    Article  Google Scholar 

  79. Tan, Y. K., & Panda, S. K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60(4), 1367–1377. https://doi.org/10.1109/TIM.2010.2101311.

    Article  Google Scholar 

  80. Lee, J. S., Yong, H., Choi, Y. I., Ryu, J., & Lee, S. (2021). Stackable disk-shaped triboelectric nanogenerator to generate energy from omnidirectional wind. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-021-00340-9.

    Article  Google Scholar 

  81. Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6(1), 1–11.

    Article  Google Scholar 

  82. Fan, F. R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114. https://doi.org/10.1021/nl300988z.

    Article  Google Scholar 

  83. Wang, S., Lin, L., & Wang, Z. L. (2012). Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters, 12(12), 6339–6346. https://doi.org/10.1021/nl303573d.

    Article  Google Scholar 

  84. Zhu, G., Pan, C., Guo, W., Chen, C. Y., Zhou, Y., Yu, R., & Wang, Z. L. (2012). Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Letters, 12(9), 4960–4965. https://doi.org/10.1021/nl302560k.

    Article  Google Scholar 

  85. Li, S., Peng, W., Wang, J., Lin, L., Zi, Y., Zhang, G., & Wang, Z. L. (2016). All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy. ACS Nano, 10(8), 7973–7981. https://doi.org/10.1021/acsnano.6b03926.

    Article  Google Scholar 

  86. Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., & Wang, Z. L. (2013). Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 13(5), 2226–2233. https://doi.org/10.1021/nl400738p.

    Article  Google Scholar 

  87. Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y. S., Jing, Q., & Wang, Z. L. (2013). Linear-grating triboelectric generator based on sliding electrification. Nano Letters, 13(5), 2282–2289. https://doi.org/10.1021/nl4008985.

    Article  Google Scholar 

  88. Qin, K., Chen, C., Pu, X., Tang, Q., He, W., Liu, Y., & Hu, C. (2021). Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Letters, 13, 1–9. https://doi.org/10.1007/s40820-020-00575-2.

    Article  Google Scholar 

  89. Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y. S., Wen, X., & Wang, Z. L. (2013). Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano, 7(8), 7342–7351. https://doi.org/10.1021/nn403021m.

    Article  Google Scholar 

  90. Dudem, B., Mule, A. R., Patnam, H. R., & Yu, J. S. (2019). Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy, 55, 305–315. https://doi.org/10.1016/j.nanoen.2018.10.074.

    Article  Google Scholar 

  91. Wang, S., Xie, Y., Niu, S., Lin, L., & Wang, Z. L. (2014). Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 26(18), 2818–2824. https://doi.org/10.1002/adma.201305303.

    Article  Google Scholar 

  92. Kang, M., Kim, T. Y., Seung, W., Han, J. H., & Kim, S. W. (2018). Cylindrical free-standing mode triboelectric generator for suspension system in vehicle. Micromachines, 10(1), 17. https://doi.org/10.3390/mi10010017.

    Article  Google Scholar 

  93. Kao, F. C., Ho, H. H., Chiu, P. Y., Hsieh, M. K., Liao, J. C., Lai, P. L., & Lin, Z. H. (2022). Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Science and Technology of Advanced Materials, 23(1), 1–16. https://doi.org/10.1080/14686996.2021.2015249.

    Article  Google Scholar 

  94. Ra, Y., Oh, S., Lee, J., Yun, Y., Cho, S., Choi, J. H., & Choi, D. (2020). Triboelectric signal generation and its versatile utilization during gear-based ordinary power transmission. Nano Energy, 73, 104745. https://doi.org/10.1016/j.nanoen.2020.104745.

    Article  Google Scholar 

  95. Wang, Z. L. (2020). Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Advanced Energy Materials, 10(17), 2000137. https://doi.org/10.1002/aenm.202000137.

    Article  Google Scholar 

  96. Burhan, M., Rehman, R. A., Khan, B., & Kim, B. S. (2018). IoT elements, layered architectures and security issues: A comprehensive survey. Sensors, 18(9), 2796. https://doi.org/10.3390/s18092796.

    Article  Google Scholar 

  97. Liu, L., Shi, Q., Ho, J. S., & Lee, C. (2019). Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 66, 104167. https://doi.org/10.1016/j.nanoen.2019.104167.

    Article  Google Scholar 

  98. Yoon, S., Carreon-Bautista, S., & Sánchez-Sinencio, E. (2018). An area efficient thermal energy harvester with reconfigurable capacitor charge pump for IoT applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(12), 1974–1978. https://doi.org/10.1109/TCSII.2018.2794299.

    Article  Google Scholar 

  99. Shafique, K., Khawaja, B. A., Khurram, M. D., Sibtain, S. M., Siddiqui, Y., Mustaqim, M., & Yang, X. (2018). Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications. IEEE Access, 6, 30932–30941. https://doi.org/10.1109/ACCESS.2018.2834392.

    Article  Google Scholar 

  100. Zhou, Y. S., Li, S., Niu, S., & Wang, Z. L. (2016). Effect of contact-and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Research, 9, 3705–3713. https://doi.org/10.1007/s12274-016-1241-4.

    Article  Google Scholar 

  101. Wang, Z. L. (2018). Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—A recall on the original thoughts for coining these fields. Nano Energy, 54, 477–483. https://doi.org/10.1016/j.nanoen.2018.09.068.

    Article  Google Scholar 

  102. Wang, Z. L. (2019). Entropy theory of distributed energy for internet of things. Nano Energy, 58, 669–672. https://doi.org/10.1016/j.nanoen.2019.02.012.

    Article  Google Scholar 

  103. Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2013). Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science, 6(12), 3576–3583. https://doi.org/10.1039/C3EE42571A.

    Article  Google Scholar 

  104. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., & Wang, Z. L. (2014). Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Advanced Functional Materials, 24(22), 3332–3340. https://doi.org/10.1002/adfm.201303799.

    Article  Google Scholar 

  105. Niu, S., & Wang, Z. L. (2015). Theoretical systems of triboelectric nanogenerators. Nano Energy, 14, 161–192. https://doi.org/10.1016/j.nanoen.2014.11.034.

    Article  Google Scholar 

  106. Chung, S. H., Chung, J., & Lee, S. (2022). Recent advances in lubricant-based triboelectric nanogenerators for enhancing mechanical lifespan and electrical output. Nanoenergy Advances, 2(2), 210–221. https://doi.org/10.3390/nanoenergyadv2020009.

    Article  Google Scholar 

  107. Son, J. H., Heo, D., Song, Y., Chung, J., Kim, B., Nam, W., & Lee, S. (2022). Highly reliable triboelectric bicycle tire as self-powered bicycle safety light and pressure sensor. Nano Energy, 93, 106797. https://doi.org/10.1016/j.nanoen.2021.106797.

    Article  Google Scholar 

  108. Chung, J., Heo, D., Cha, K., Lin, Z. H., Hong, J., & Lee, S. (2021). A portable device for water-sloshing-based electricity generation based on charge separation and accumulation. Iscience, 24(5), 102442. https://doi.org/10.1016/j.isci.2021.102442.

    Article  Google Scholar 

  109. Chung, J., Song, M., Chung, S. H., Choi, W., Lee, S., Lin, Z. H., & Lee, S. (2021). Triangulated cylinder origami-based piezoelectric/triboelectric hybrid generator to harvest coupled axial and rotational motion. Research. https://doi.org/10.34133/2021/7248579.

    Article  Google Scholar 

  110. Chung, S. H., Chung, J., Kim, B., Kim, S., & Lee, S. (2021). Screw pump-type water triboelectric nanogenerator for active water flow control. Advanced Engineering Materials, 23(1), 2000758. https://doi.org/10.1002/adem.202000758.

    Article  Google Scholar 

  111. Kim, D., Chung, J., Heo, D., Chung, S. H., Lee, G., Hwang, P. T., & Lee, S. (2022). AC/DC convertible pillar-type triboelectric nanogenerator with output current amplified by the design of the moving electrode. Advanced Energy Materials, 12(9), 2103571. https://doi.org/10.1002/aenm.202103571.

    Article  Google Scholar 

  112. Bhatia, D., Lee, K. S., Niazi, M. U. K., & Park, H. S. (2022). Triboelectric nanogenerator integrated origami gravity support device for shoulder rehabilitation using exercise gaming. Nano Energy, 97, 107179. https://doi.org/10.1016/j.nanoen.2022.107179.

    Article  Google Scholar 

  113. Hwang, H. J., Kim, J. S., Kim, W., Park, H., Bhatia, D., Jee, E., & Choi, D. (2019). An ultra-mechanosensitive visco-poroelastic polymer ion pump for continuous self-powering kinematic triboelectric nanogenerators. Advanced Energy Materials, 9(17), 1803786. https://doi.org/10.1002/aenm.201803786.

    Article  Google Scholar 

  114. Cha, K., Chung, J., Heo, D., Song, M., Chung, S. H., Hwang, P. T., & Lee, S. (2022). Lightweight mobile stick-type water-based triboelectric nanogenerator with amplified current for portable safety devices. Science and Technology of Advanced Materials, 23(1), 161–168. https://doi.org/10.1080/14686996.2022.2030195.

    Article  Google Scholar 

  115. Seol, M. L., Woo, J. H., Jeon, S. B., Kim, D., Park, S. J., Hur, J., & Choi, Y. K. (2015). Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy, 14, 201–208. https://doi.org/10.1016/j.nanoen.2014.11.016.

    Article  Google Scholar 

  116. Zheng, Q., Zhang, H., Shi, B., Xue, X., Liu, Z., Jin, Y., & Wang, Z. L. (2016). In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano, 10(7), 6510–6518. https://doi.org/10.1021/acsnano.6b02693.

    Article  Google Scholar 

  117. Fan, X., Chen, J., Yang, J., Bai, P., Li, Z., & Wang, Z. L. (2015). Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano, 9(4), 4236–4243. https://doi.org/10.1021/acsnano.5b00618.

    Article  Google Scholar 

  118. Fatma, B., Bhunia, R., Gupta, S., Verma, A., Verma, V., & Garg, A. (2019). Maghemite/polyvinylidene fluoride nanocomposite for transparent, flexible triboelectric nanogenerator and noncontact magneto-triboelectric nanogenerator. ACS Sustainable Chemistry & Engineering, 7(17), 14856–14866. https://doi.org/10.1021/acssuschemeng.9b02953.

    Article  Google Scholar 

  119. Pu, X., An, S., Tang, Q., Guo, H., & Hu, C. (2021). Wearable triboelectric sensors for biomedical monitoring and human-machine interface. Iscience, 24(1), 102027. https://doi.org/10.1016/j.isci.2020.102027.

    Article  Google Scholar 

  120. Dharmasena, R. D. I. G., & Silva, S. R. P. (2019). Towards optimized triboelectric nanogenerators. Nano Energy, 62, 530–549. https://doi.org/10.1016/j.nanoen.2019.05.057.

    Article  Google Scholar 

  121. Hwang, H. J., Hong, H., Cho, B. G., Lee, H. K., Kim, J. S., Lee, U. J., & Choi, D. (2021). Band well structure with localized states for enhanced charge accumulation on Triboelectrification. Nano Energy, 90, 106647. https://doi.org/10.1016/j.nanoen.2021.106647.

    Article  Google Scholar 

  122. Choi, J. H., Ra, Y., Cho, S., La, M., Park, S. J., & Choi, D. (2021). Electrical charge storage effect in carbon based polymer composite for long-term performance enhancement of the triboelectric nanogenerator. Composites Science and Technology, 207, 108680. https://doi.org/10.1016/j.compscitech.2021.108680.

    Article  Google Scholar 

  123. Heo, D., Chung, J., Shin, G., Seok, M., Lee, C., & Lee, S. (2021). Yo-yo inspired triboelectric nanogenerator. Energies, 14(7), 1798. https://doi.org/10.3390/en14071798.

    Article  Google Scholar 

  124. Liu, Y., Liu, W., Wang, Z., He, W., Tang, Q., Xi, Y., & Hu, C. (2020). Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nature Communications, 11(1), 1599. https://doi.org/10.1038/s41467-020-15368-9.

    Article  Google Scholar 

  125. Chung, J., Heo, D., Shin, G., Choi, D., Choi, K., Kim, D., & Lee, S. (2019). Ion-enhanced field emission triboelectric nanogenerator. Advanced Energy Materials, 9(37), 1901731. https://doi.org/10.1002/aenm.201901731.

    Article  Google Scholar 

  126. Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2015). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235. https://doi.org/10.1016/j.nanoen.2015.01.038.

    Article  Google Scholar 

  127. Lei, H., Chen, Y., Gao, Z., Wen, Z., & Sun, X. (2021). Advances in self-powered triboelectric pressure sensors. Journal of Materials Chemistry A, 9(36), 20100–20130. https://doi.org/10.1039/D1TA03505C.

    Article  Google Scholar 

  128. Zhang, H., Quan, L., & Voldman, L. Q. E. S. H. (2019). Theoretical prediction and optimization approach to triboelectric nanogenerator. In Electrostatic discharge-from electrical breakdown in micro-gaps to nano-generators. IntechOpen.

  129. Chen, X., Villa, N. S., Zhuang, Y., Chen, L., Wang, T., Li, Z., & Kong, T. (2020). Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Advanced Energy Materials, 10(4), 1902769. https://doi.org/10.1002/aenm.201902769.

    Article  Google Scholar 

  130. Nguyen, Q. T., Vo, C. P., Nguyen, T. H., & Ahn, K. K. (2022). A direct-current triboelectric nanogenerator energy harvesting system based on water electrification for self-powered electronics. Applied Sciences, 12(5), 2724. https://doi.org/10.3390/app12052724.

    Article  Google Scholar 

  131. Wang, Z. L., Lin, L., Chen, J., Niu, S., Zi, Y., Wang, Z. L., & Zi, Y. (2016). Triboelectric nanogenerator: Vertical contact-separation mode. Triboelectric nanogenerators, 23–47.

  132. Wang, Z. L., Lin, L., Chen, J., Niu, S., Zi, Y., Wang, Z. L., & Zi, Y. (2016). Triboelectric nanogenerator: Lateral sliding mode. Triboelectric nanogenerators (pp. 49–90). Cham: Springer.

    Chapter  Google Scholar 

  133. Wang, Z. L., Lin, L., Chen, J., Niu, S., Zi, Y., Wang, Z. L., & Zi, Y. (2016). Triboelectric nanogenerator: Single-electrode mode. Triboelectric nanogenerators (pp. 91–107). Cham: Springer.

    Chapter  Google Scholar 

  134. Wang, Z. L., Lin, L., Chen, J., Niu, S., Zi, Y., Wang, Z. L., & Zi, Y. (2016). Triboelectric nanogenerator: Freestanding triboelectric-layer mode. Triboelectric Nanogenerators (pp. 109–153). Cham: Springer.

    Chapter  Google Scholar 

  135. Zhou, Z., Padgett, S., Cai, Z., Conta, G., Wu, Y., He, Q., & Chen, J. (2020). Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosensors and Bioelectronics, 155, 112064. https://doi.org/10.1016/j.bios.2020.112064.

    Article  Google Scholar 

  136. Huang, T., Zhang, J., Yu, B., Yu, H., Long, H., Wang, H., & Zhu, M. (2019). Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano Energy, 58, 375–383. https://doi.org/10.1016/j.nanoen.2019.01.038.

    Article  Google Scholar 

  137. Shaikh, M. O., Huang, Y. B., Wang, C. C., & Chuang, C. H. (2019). Wearable woven triboelectric nanogenerator utilizing electrospun PVDF nanofibers for mechanical energy harvesting. Micromachines, 10(7), 438. https://doi.org/10.3390/mi10070438.

    Article  Google Scholar 

  138. Zhu, G., Zhou, Y. S., Bai, P., Meng, X. S., Jing, Q., Chen, J., & Wang, Z. L. (2014). A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Advanced Materials, 26(23), 3788–3796. https://doi.org/10.1002/adma.201400021.

    Article  Google Scholar 

  139. Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., & Wang, Z. L. (2014). Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials, 26(38), 6599–6607. https://doi.org/10.1002/adma.201402428.

    Article  Google Scholar 

  140. Zou, Y., Raveendran, V., & Chen, J. (2020). Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 77, 105303. https://doi.org/10.1016/j.nanoen.2020.105303.

    Article  Google Scholar 

  141. Wang, Y., Huang, T., Gao, Q., Li, J., Wen, J., Wang, Z. L., & Cheng, T. (2022). High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research. https://doi.org/10.1007/s12274-021-3956-0.

    Article  Google Scholar 

  142. Nguyen, Q. T., & Nguyen, K.K.-K. (2021). Fluid-based triboelectric nanogenerators: A review of current status and applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 1043–1060. https://doi.org/10.1007/s40684-020-00255-x.

    Article  Google Scholar 

  143. Choi, D., Yoo, D., Cha, K. J., La, M., & Kim, D. S. (2017). Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy, 36, 250–259. https://doi.org/10.1016/j.nanoen.2017.04.026.

    Article  Google Scholar 

  144. Choi, D., Lee, S., Park, S. M., Cho, H., Hwang, W., & Kim, D. S. (2015). Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Research, 8, 2481–2491. https://doi.org/10.1007/s12274-015-0756-4.

    Article  Google Scholar 

  145. Xu, C., Fu, X., Li, C., Liu, G., Gao, Y., Qi, Y., & Zhang, C. (2022). Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification. Microsystems & Nanoengineering, 8(1), 30. https://doi.org/10.1038/s41378-022-00362-6.

    Article  Google Scholar 

  146. Yoo, D., Park, S. C., Lee, S., Sim, J. Y., Song, I., Choi, D., & Kim, D. S. (2019). Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies. Nano Energy, 57, 424–431. https://doi.org/10.1016/j.nanoen.2018.12.035.

    Article  Google Scholar 

  147. Pang, Y., Cao, Y., Derakhshani, M., Fang, Y., Wang, Z. L., & Cao, C. (2021). Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter, 4(1), 116–143. https://doi.org/10.1016/j.matt.2020.10.018.

    Article  Google Scholar 

  148. Wang, A. C., Wu, C., Pisignano, D., Wang, Z. L., & Persano, L. (2018). Polymer nanogenerators: Opportunities and challenges for large-scale applications. Journal of Applied Polymer Science, 135(24), 45674. https://doi.org/10.1002/app.45674.

    Article  Google Scholar 

  149. Wang, Z. L., Jiang, T., & Xu, L. (2017). Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 39, 9–23. https://doi.org/10.1016/j.nanoen.2017.06.035.

    Article  Google Scholar 

  150. Cheng, T., Li, Y., Wang, Y. C., Gao, Q., Ma, T., & Wang, Z. L. (2019). Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting. Nano Energy, 60, 137–143. https://doi.org/10.1016/j.nanoen.2019.03.019.

    Article  Google Scholar 

  151. Yin, M., Lu, X., Qiao, G., Xu, Y., Wang, Y., Cheng, T., & Wang, Z. L. (2020). Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Advanced Energy Materials, 10(22), 2000627. https://doi.org/10.1002/aenm.202000627.

    Article  Google Scholar 

  152. Zhou, L., Liu, D., Li, S., Zhao, Z., Zhang, C., Yin, X., & Wang, J. (2020). Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects. Advanced Energy Materials, 10(24), 2000965. https://doi.org/10.1002/aenm.202000965.

    Article  Google Scholar 

  153. Cho, Y., Lee, K., Park, S., Ahn, S., Kim, W., Kim, J., & Park, J. J. (2019). Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure. Nano Energy, 61, 370–380. https://doi.org/10.1016/j.nanoen.2019.04.083.

    Article  Google Scholar 

  154. Pan, M., Yuan, C., Liang, X., Zou, J., Zhang, Y., & Bowen, C. (2020). Triboelectric and piezoelectric nanogenerators for future soft robots and machines. Iscience, 23(11), 101682. https://doi.org/10.1016/j.isci.2020.101682.

    Article  Google Scholar 

  155. Sun, D. J., Song, W. Z., Li, C. L., Chen, T., Zhang, D. S., Zhang, J., & Long, Y. Z. (2022). High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning. Nano Energy, 101, 107599. https://doi.org/10.1016/j.nanoen.2022.107599.

    Article  Google Scholar 

  156. Fu, S., He, W., Wu, H., Shan, C., Du, Y., Li, G., & Hu, C. (2022). High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Letters, 14(1), 155. https://doi.org/10.1007/s40820-022-00898-2.

    Article  Google Scholar 

  157. Zhao, L., Zheng, Q., Ouyang, H., Li, H., Yan, L., Shi, B., & Li, Z. (2016). A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy, 28, 172–178. https://doi.org/10.1016/j.nanoen.2016.08.024.

    Article  Google Scholar 

  158. Xu, W., Wong, M. C., & Hao, J. (2019). Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy, 55, 203–215. https://doi.org/10.1016/j.nanoen.2018.10.073.

    Article  Google Scholar 

  159. Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., & Wang, Z. L. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 13(6), 2916–2923. https://doi.org/10.1021/nl4013002.

    Article  Google Scholar 

  160. He, T., Wang, H., Wang, J., Tian, X., Wen, F., Shi, Q., & Lee, C. (2019). Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Advanced Science, 6(24), 1901437. https://doi.org/10.1002/advs.201901437.

    Article  Google Scholar 

  161. Xu, Y., Min, G., Gadegaard, N., Dahiya, R., & Mulvihill, D. M. (2020). A unified contact force-dependent model for triboelectric nanogenerators accounting for surface roughness. Nano Energy, 76, 105067. https://doi.org/10.1016/j.nanoen.2020.105067.

    Article  Google Scholar 

  162. Su, M., Brugger, J., & Kim, B. (2020). Simply structured wearable triboelectric nanogenerator based on a hybrid composition of carbon nanotubes and polymer layer. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 683–698. https://doi.org/10.1007/s40684-020-00212-8.

    Article  Google Scholar 

  163. Ahmed, A., Hassan, I., El-Kady, M. F., Radhi, A., Jeong, C. K., Selvaganapathy, P. R., & Kaner, R. B. (2019). Integrated triboelectric nanogenerators in the era of the internet of things. Advanced Science, 6(24), 1802230. https://doi.org/10.1002/advs.201802230.

    Article  Google Scholar 

  164. Lee, C., Yang, S., Choi, D., Kim, W., Kim, J., & Hong, J. (2019). Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators. Nano Energy, 57, 353–362. https://doi.org/10.1016/j.nanoen.2018.12.051.

    Article  Google Scholar 

  165. Rani, K. V., Sarma, B., & Sarma, A. (2018). Plasma treatment on cotton fabrics to enhance the adhesion of reduced graphene oxide for electro-conductive properties. Diamond and Related Materials, 84, 77–85. https://doi.org/10.1016/j.diamond.2018.03.009.

    Article  Google Scholar 

  166. Paosangthong, W., Torah, R., & Beeby, S. (2019). Recent progress on textile-based triboelectric nanogenerators. Nano Energy, 55, 401–423. https://doi.org/10.1016/j.nanoen.2018.10.036.

    Article  Google Scholar 

  167. Liu, D., Yin, X., Guo, H., Zhou, L., Li, X., Zhang, C., & Wang, Z. L. (2019). A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 5(4), 6437. https://doi.org/10.1126/sciadv.aav6437.

    Article  Google Scholar 

  168. Zhu, J., Wang, H., Zhang, Z., Ren, Z., Shi, Q., Liu, W., & Lee, C. (2020). Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications. Nano Energy, 73, 104760. https://doi.org/10.1016/j.nanoen.2020.104760.

    Article  Google Scholar 

  169. Xu, S., Ding, W., Guo, H., Wang, X., & Wang, Z. L. (2019). Boost the performance of triboelectric nanogenerators through circuit oscillation. Advanced Energy Materials, 9(30), 1900772. https://doi.org/10.1002/aenm.201900772.

    Article  Google Scholar 

  170. Kim, T., Kim, D. Y., Yun, J., Kim, B., Lee, S. H., Kim, D., & Lee, S. (2018). Direct-current triboelectric nanogenerator via water electrification and phase control. Nano Energy, 52, 95–104. https://doi.org/10.1016/j.nanoen.2018.07.048.

    Article  Google Scholar 

  171. Qiao, G., Wang, J., Yu, X., Jia, R., Cheng, T., & Wang, Z. L. (2021). A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier. Nano Energy, 79, 105408. https://doi.org/10.1016/j.nanoen.2020.105408.

    Article  Google Scholar 

  172. Yang, Y., Zhang, H., & Wang, Z. L. (2014). Direct-current triboelectric generator. Advanced Functional Materials, 24(24), 3745–3750. https://doi.org/10.1002/adfm.201304295.

    Article  Google Scholar 

  173. Wang, J., Li, Y., Xie, Z., Xu, Y., Zhou, J., Cheng, T., & Wang, Z. L. (2020). Cylindrical direct-current triboelectric nanogenerator with constant output current. Advanced Energy Materials, 10(10), 1904227. https://doi.org/10.1002/aenm.201904227.

    Article  Google Scholar 

  174. Dharmasena, R. D. I. G., Cronin, H. M., Dorey, R. A., & Silva, S. R. P. (2020). Direct current contact-mode triboelectric nanogenerators via systematic phase shifting. Nano Energy, 75, 104887. https://doi.org/10.1016/j.nanoen.2020.104887.

    Article  Google Scholar 

  175. Yin, X., Liu, D., Zhou, L., Li, X., Xu, G., Liu, L., & Wang, Z. L. (2020). A motion vector sensor via direct-current Triboelectric Nanogenerator. Advanced Functional Materials, 30(34), 2002547. https://doi.org/10.1002/adfm.202002547.

    Article  Google Scholar 

  176. Dharmasena, R. I. G., Deane, J. H., & Silva, S. R. P. (2018). Nature of power generation and output optimization criteria for triboelectric nanogenerators. Advanced Energy Materials, 8(31), 1802190. https://doi.org/10.1002/aenm.201802190.

    Article  Google Scholar 

  177. Dharmasena, R. D. I. G., Jayawardena, K. D. G. I., Mills, C. A., Dorey, R. A., & Silva, S. R. P. (2018). A unified theoretical model for triboelectric nanogenerators. Nano Energy, 48, 391–400. https://doi.org/10.1016/j.nanoen.2018.03.073.

    Article  Google Scholar 

  178. Nguyen, V., & Yang, R. (2013). Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy, 2(5), 604–608. https://doi.org/10.1016/j.nanoen.2013.07.012.

    Article  Google Scholar 

  179. Huang, L. B., Dai, X., Sun, Z., Wong, M. C., Pang, S. Y., Han, J., & Hao, J. (2021). Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy, 82, 105724. https://doi.org/10.1016/j.nanoen.2020.105724.

    Article  Google Scholar 

  180. Bui, V. T., Oh, J. H., Kim, J. N., Zhou, Q., & Oh, I. K. (2020). Nest-inspired nanosponge-Cu woven mesh hybrid for ultrastable and high-power triboelectric nanogenerator. Nano Energy, 71, 104561. https://doi.org/10.1016/j.nanoen.2020.104561.

    Article  Google Scholar 

  181. Li, Z., Liu, B., Kong, H., Yu, M., Qin, M., & Teng, C. (2018). Layer-by-layer self-assembly strategy for surface modification of aramid fibers to enhance interfacial adhesion to epoxy resin. Polymers, 10(8), 820. https://doi.org/10.3390/polym10080820.

    Article  Google Scholar 

  182. Nafari, A., & Sodano, H. A. (2017). Surface morphology effects in a vibration based triboelectric energy harvester. Smart Materials and Structures, 27(1), 015029. https://doi.org/10.1088/1361-665X/aa9ccb.

    Article  Google Scholar 

  183. Dudem, B., Kim, D. H., Mule, A. R., & Yu, J. S. (2018). Enhanced performance of microarchitectured PTFE-based triboelectric nanogenerator via simple thermal imprinting lithography for self-powered electronics. ACS Applied Materials & Interfaces, 10(28), 24181–24192. https://doi.org/10.1021/acsami.8b06295.

    Article  Google Scholar 

  184. Liu, Y., Mo, J., Fu, Q., Lu, Y., Zhang, N., Wang, S., & Nie, S. (2020). Enhancement of triboelectric charge density by chemical functionalization. Advanced Functional Materials, 30(50), 2004714. https://doi.org/10.1002/adfm.202004714.

    Article  Google Scholar 

  185. Liu, Z., Huang, Y., Shi, Y., Tao, X., He, H., Chen, F., & Qu, J. P. (2022). Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nature Communications, 13(1), 4083. https://doi.org/10.1038/s41467-022-31822-2.

    Article  Google Scholar 

  186. Mishra, S., Supraja, P., Haranath, D., Kumar, R. R., & Pola, S. (2022). Effect of surface and contact points modification on the output performance of triboelectric nanogenerator. Nano Energy, 104, 107964. https://doi.org/10.1016/j.nanoen.2022.107964.

    Article  Google Scholar 

  187. Jeong, C. K., Baek, K. M., Niu, S., Nam, T. W., Hur, Y. H., Park, D. Y., & Lee, K. J. (2014). Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Letters, 14(12), 7031–7038. https://doi.org/10.1021/nl503402c.

    Article  Google Scholar 

  188. Mahmud, M. P., Lee, J., Kim, G., Lim, H., & Choi, K. B. (2016). Improving the surface charge density of a contact-separation-based triboelectric nanogenerator by modifying the surface morphology. Microelectronic Engineering, 159, 102–107. https://doi.org/10.1016/j.mee.2016.02.066.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the funding support by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A2C2004714).

Funding

The authors are thankful for the funding support provided by the National Research Foundation of Korea (NRF), which is funded by the Korean government (MSIT) under Grant No. 2020R1A2C2004714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudi, M., An, CY. & Kim, DE. A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2023). https://doi.org/10.1007/s40684-023-00569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00569-6

Keywords

Navigation