Skip to main content
Log in

The Promise of 3D Printed Solid Polymer Electrolytes for Developing Sustainable Batteries: A Techno-Commercial Perspective

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The year 1975 can be claimed to be the year of inception for the research and development of solid polymer electrolytes (SPEs) for Lithium-Ion Batteries (LIB), when the ionic conductivity of polyethylene oxide–alkaline metal ion complex was found by Peter Wright from the University of Sheffield. However, SPE research has undergone a leapfrog development, with conductivity values improving from 1 × 10–7 S·cm−1 to 1 × 10–1 S·cm−1. The seed of development of SPEs spurs from the need for introducing design freedom to battery structures as well as the need for leak-proof electrolytes, greater operational safety, higher energy density, and other considerations. While the benefits of SPEs are evident, poor interfacial contact is a major factor limiting their application. This review presents the history of SPEs and shows how the additive manufacturing (AM) could prove beneficial for the improvement of performance and the functional implementation of SPEs. While the article articulates a technical review of additively manufactured SPEs, it also provides a lab-to-market perspective that could aid in shaping the future of green technology in energy storage. It also aims to provide an overall picture about the evolution and diversity of research advances in the development of greener SPEs through AM technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not available.

References

  1. Masias, A., Marcicki, J., & Paxton, W. A. (2021). Opportunities and challenges of Lithium ion batteries in automotive applications. ACS Energy Letters, 6(2), 621–630. https://doi.org/10.1021/acsenergylett.0c02584

    Article  Google Scholar 

  2. Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-ion batteries. Advanced Materials, 30(33), 1800561. https://doi.org/10.1002/adma.201800561

    Article  Google Scholar 

  3. He, W., Guo, W., Wu, H., Lin, L., Liu, Q., Han, X., & Peng, D. L. (2021). Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Advanced Materials, 33(50), 2005937. https://doi.org/10.1002/adma.202005937

    Article  Google Scholar 

  4. Emon, M. O. F., & Choi, J. W. (2017). Flexible piezoresistive sensors embedded in 3D printed tires. Sensors (Switzerland), 17(3), 656. https://doi.org/10.3390/s17030656

    Article  Google Scholar 

  5. Jo, Y., Park, H. J., Kim, Y. B., Lee, S. S., Lee, S. Y., Kim, S. K., & Jeong, S. (2020). Form-factor free 3D copper circuits by surface-conformal direct printing and laser writing. Advanced Functional Materials, 30(45), 2004659. https://doi.org/10.1002/adfm.202004659

    Article  Google Scholar 

  6. Ponnada, S., Babu Gorle, D., Chandra Bose, R. S., Sadat Kiai, M., Devi, M., Raju, C. V., Baydogan, N., Nanda, K. K., Marken, F., & Sharma, R. K. (2022). Current insight into 3d printing in solid-state lithium-ion batteries: a perspective. Batteries & Supercaps, 5(8), e202200223. https://doi.org/10.1002/batt.202200223

    Article  Google Scholar 

  7. Zhang, B., Guo, Y. X., Sun, H., & Wu, Y. (2017). Metallic, 3D-printed, K-band-stepped, double-ridged square horn antennas. Applied Sciences (Switzerland), 8(1), 33. https://doi.org/10.3390/app8010033

    Article  Google Scholar 

  8. Sverdrup, H. U., Olafsdottir, A. H., & Ragnarsdottir, K. V. (2019). “On the long-term sustainability of copper, zinc and lead supply, using a system dynamics model”, resources. Conservation and Recycling: X. https://doi.org/10.1016/j.rcrx.2019.100007

    Article  Google Scholar 

  9. Cong, L., Zhao, F., & Sutherland, J. W. (2017). Integration of dismantling operations into a value recovery plan for circular economy. Journal of Cleaner Production, 149, 378–386. https://doi.org/10.1016/j.jclepro.2017.02.115

    Article  Google Scholar 

  10. Royo, P., Ferreira, V. J., Ure, Z., Gledhill, S., López-Sabirón, A. M., & Ferreira, G. (2020). Multiple-criteria decision Analysis and haracterization of phase change materials for waste heat recovery at high temperature for sustainable energy-intensive industry. Materials and Design. https://doi.org/10.1016/j.matdes.2019.108215

    Article  Google Scholar 

  11. Opatokun, S. A., Lopez-Sabiron, A. M., Ferreira, G., & Strezov, V. (2017). Life cycle analysis of energy production from food waste through anaerobic digestion, pyrolysis and integrated energy system. Sustainability (Switzerland), 9(10), 1804. https://doi.org/10.3390/su9101804

    Article  Google Scholar 

  12. López-Sabirón, A. M., et al. (2015). Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry. Waste Management and Research, 33(8), 715–722. https://doi.org/10.1177/0734242X15586476

    Article  Google Scholar 

  13. Kim, T., Song, W., Son, D. Y., Ono, L. K., & Qi, Y. (2019). Lithium-ion batteries: Outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 7(7), 2942–2964. https://doi.org/10.1039/C8TA10513H

    Article  Google Scholar 

  14. Winter, M., Barnett, B., & Xu, K. (2018). “Before Li Ion Batteries”, chemical reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.8b00422

    Article  Google Scholar 

  15. Masias, A. (2018). Lithium-Ion Battery Design for Transportation. Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost, 1–33. Doi: https://doi.org/10.1007/978-3-319-69950-9.

  16. European Council for Automotive R&D, “Battery requirements for future automotive applications EG BEV&FCEV,” 2019. [Online]. Available: https://www.dke.de/resource/blob/933404/ fa7a24099c84ef613d8e7afd2c860a39/haracteri-li-ionen

  17. United States Advanced Battery Consortium (USABC). Development of Lithium Electrode Based Cell and Manufacturing for Automotive Traction Applications: Appendix A – Lithium Electrode Based Cell Goals, April 2020. Retrieved from https://uscar.org/usabc/.

  18. United States Advanced Battery Consortium (USABC). Goals for advanced high performance batteries for electric vehicle applications. April 2020. Retrieved from: https://uscar.org/usabc/

  19. Tan, M. Y., Safanama, D., Goh, S. S., Lim, J. Y., Lee, C. H., Yeo, J. C. C., & Fam, D. W. H. (2022). Concepts and emerging trends for structural battery electrolytes. ChemistryAn Asian Journal, 17(21), e202200784.

    Article  Google Scholar 

  20. Myung, S. T., Maglia, F., Park, K. J., Yoon, C. S., Lamp, P., Kim, S. J., & Sun, Y. K. (2017). Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Letters, 2(1), 196–223. https://doi.org/10.1021/acsenergylett.6b00594

    Article  Google Scholar 

  21. Thackeray, M. M., Kang, S. H., Johnson, C. S., Vaughey, J. T., Benedek, R., & Hackney, S. A. (2007). Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry, 17(30), 3112–3125. https://doi.org/10.1039/b702425h

    Article  Google Scholar 

  22. Chen, S., Dai, F., & Cai, M. (2020). Opportunities and challenges of high-energy Lithium metal batteries for electric vehicle applications. ACS Energy Letters, 5(10), 3140–3151. https://doi.org/10.1021/acsenergylett.0c01545

    Article  Google Scholar 

  23. Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials. https://doi.org/10.1038/natrevmats.2016.13

    Article  Google Scholar 

  24. Shen, X., Tian, Z., Fan, R., Shao, L., Zhang, D., Cao, G., & Bai, Y. (2018). Research progress on silicon/carbon composite anode materials for lithium-ion battery. Journal of Energy Chemistry, 27(4), 1067–1090. https://doi.org/10.1016/j.jechem.2017.12.012

    Article  Google Scholar 

  25. Salah, M., Murphy, P., Hall, C., Francis, C., Kerr, R., & Fabretto, M. (2019). Pure silicon thin-film anodes for lithium-ion batteries: a review. Journal of Power Sources, 414, 48–67. https://doi.org/10.1016/j.jpowsour.2018.12.068

    Article  Google Scholar 

  26. Wold, J., Marcicki, J., & Masias, A. (2017). Derived Quantities uncertainty propagation in high precision battery testing. Journal of the Electrochemical Society, 164(9), A2131–A2137. https://doi.org/10.1149/2.1461709jes

    Article  Google Scholar 

  27. Belt, J., Utgikar, V., & Bloom, I. (2011). Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes. Journal of Power Sources, 196(23), 10213–10221. https://doi.org/10.1016/j.jpowsour.2011.08.067

    Article  Google Scholar 

  28. Smith, A. J., Burns, J. C., Xiong, D., & Dahn, J. R. (2011). Interpreting high precision coulometry results on Li-ion Cells. Journal of the Electrochemical Society, 158(10), A1136–A1142. https://doi.org/10.1149/1.3625232

    Article  Google Scholar 

  29. Burns, J. C., Kassam, A., Sinha, N. N., Downie, L. E., Solnickova, L., Way, B. M., & Dahn, J. R. (2013). Predicting and extending the lifetime of Li-ion batteries. Journal of The Electrochemical Society, 160(9), A1451. https://doi.org/10.1149/2.060309jes

    Article  Google Scholar 

  30. Ma, X., Harlow, J. E., Li, J., Ma, L., Hall, D. S., Buteau, S., & Dahn, J. R. (2019). Hindering rollover failure of Li [Ni0. 5Mn0. 3Co0.2] O2/graphite pouch cells during long-term cycling. Journal of The Electrochemical Society. https://doi.org/10.1149/2.0801904jes

    Article  Google Scholar 

  31. Burns, J. C., Stevens, D. A., & Dahn, J. R. (2015). In-situ detection of lithium plating using high precision coulometry. Journal of the Electrochemical Society, 162(6), A959–A964. https://doi.org/10.1149/2.0621506jes

    Article  Google Scholar 

  32. Bach, T. C., Schuster, S. F., Fleder, E., Müller, J., Brand, M. J., Lorrmann, H., & Sextl, G. (2016). Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. Journal of Energy Storage, 5, 212–223. https://doi.org/10.1016/j.est.2016.01.003

    Article  Google Scholar 

  33. Sauerteig, D., Hanselmann, N., Arzberger, A., Reinshagen, H., Ivanov, S., & Bund, A. (2018). Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries. Journal of Power Sources, 378, 235–247. https://doi.org/10.1016/j.jpowsour.2017.12.044

    Article  Google Scholar 

  34. Spingler, F. B., Wittmann, W., Sturm, J., Rieger, B., & Jossen, A. (2018). Optimum fast charging of lithium-ion pouch cells based on local volume expansion criteria. Journal of Power Sources, 393, 152–160. https://doi.org/10.1016/j.jpowsour.2018.04.095

    Article  Google Scholar 

  35. Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C., & Braatz, R. D. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383–391. https://doi.org/10.1038/s41560-019-0356-8

    Article  Google Scholar 

  36. Attia, P. M., Grover, A., Jin, N., Severson, K. A., Markov, T. M., Liao, Y. H., & Chueh, W. C. (2020). Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. https://doi.org/10.1038/s41586-020-1994-5

    Article  Google Scholar 

  37. Yen. T. Teh, Aubrey Demaray, Kent Griffith, Charlie Parker, Josh Stilling, Sriram Bharath, Andrew Weng, Eric Zheng, Jeffrey Bell, Mouda Abusukheila, Nick Albanese, Nicholas Yu, Katherine He, Rohit Kumar, & Jhalak Sharma. (2023). The battery Report 2022. https://www.volta.foundation/annual-battery-report

  38. Duffner, F., Wentker, M., Greenwood, M., & Leker, J. (2020). Battery cost modeling: A review and directions for future research. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2020.109872

    Article  Google Scholar 

  39. J. Frith, “Battery Price Declines Slow Down in Latest Pricing Survey,” Bloomberg Finance, Nov. 30, 2021. https://www.bloomberg.com/news/articles/2021-11-30/battery-price-declines-slow-down-in-latest-pricing-survey#xj4y7vzkg

  40. Ahmed, S., Nelson, P. A., Gallagher, K. G., Susarla, N., & Dees, D. W. (2017). Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources, 342, 733–740. https://doi.org/10.1016/j.jpowsour.2016.12.069

    Article  Google Scholar 

  41. Schmuch, R., Wagner, R., Hörpel, G., Placke, T., & Winter, M. (2018). Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 3(4), 267–278. https://doi.org/10.1038/s41560-018-0107-2

    Article  Google Scholar 

  42. Turcheniuk, K., Bondarev, D., Amatucci, G. G., & Yushin, G. (2021). Battery materials for low-cost electric transportation. Materials Today, 42, 57–72. https://doi.org/10.1016/j.mattod.2020.09.027

    Article  Google Scholar 

  43. Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3(11), 2622–2646. https://doi.org/10.1016/j.joule.2019.09.014

    Article  Google Scholar 

  44. Borlaug, B., Salisbury, S., Gerdes, M., & Muratori, M. (2020). Levelized cost of charging electric vehicles in the United States. Joule, 4(7), 1470–1485. https://doi.org/10.1016/j.joule.2020.05.013

    Article  Google Scholar 

  45. Kim, H. C., Wallington, T. J., Arsenault, R., Bae, C., Ahn, S., & Lee, J. (2016). Cradle-to-gate emissions from a commercial electric vehicle Li-Ion battery: a comparative analysis. Environmental Science and Technology, 50(14), 7715–7722. https://doi.org/10.1021/acs.est.6b00830

    Article  Google Scholar 

  46. Tong, F., & Azevedo, I. M. L. (2020). “What are the best combinations of fuel-vehicle technologies to mitigate climate change and air pollution effects across the United States. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab8a85

    Article  Google Scholar 

  47. Wu, D., Guo, F., Field, F. R., III., De Kleine, R. D., Kim, H. C., Wallington, T. J., & Kirchain, R. E. (2019). Regional heterogeneity in the emissions benefits of electrified and lightweighted light-duty vehicles. Environmental science & technology, 53(18), 10560–10570. https://doi.org/10.1021/acs.est.9b00648

    Article  Google Scholar 

  48. Liu, X., Stoliarov, S. I., Denlinger, M., Masias, A., & Snyder, K. (2015). Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery. Journal of Power Sources, 280, 516–525. https://doi.org/10.1016/j.jpowsour.2015.01.125

    Article  Google Scholar 

  49. Liu, X., Wu, Z., Stoliarov, S. I., Denlinger, M., Masias, A., & Snyder, K. (2018). A Thermo-kinetic model of thermally-induced failure of a lithium ion battery: development, validation and application. Journal of the Electrochemical Society, 165(11), A2909–A2918. https://doi.org/10.1149/2.0111813jes

    Article  Google Scholar 

  50. Sahraei, E., Meier, J., & Wierzbicki, T. (2014). Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. Journal of Power Sources, 247, 503–516. https://doi.org/10.1016/j.jpowsour.2013.08.056

    Article  Google Scholar 

  51. Sahraei, E., Hill, R., & Wierzbicki, T. (2012). Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. Journal of Power Sources, 201, 307–321. https://doi.org/10.1016/j.jpowsour.2011.10.094

    Article  Google Scholar 

  52. B. Xia, Z. Chen, C. Mi, and B. Robert, “External short circuit fault diagnosis for lithium-ion batteries,” in 2014 IEEE Transportation Electrification Conference and Expo: Components, Systems, and Power Electronics – From Technology to Business and Public Policy, ITEC 2014, Jul. 2014 https://doi.org/10.1109/itec.2014.6861806.

  53. B. Xia, C. Mi, Z. Chen, and B. Robert, “Multiple cell lithium-ion battery system electric fault online diagnostics,” in 2015 IEEE Transportation Electrification Conference and Expo, ITEC 2015, Jul. 2015. https://doi.org/10.1109/ITEC.2015.7165777.

  54. A. Masias, “Ford Safety Performance of Rechargeable Energy Storage Systems (RESS),” Report No. DOT HS 812 756. Final report. Washington, D.C.: National Highway Traffic Safety Administration. July 2019. [Online]. Available: www.ntis.gov.

  55. Deng, J., Bae, C., Marcicki, J., Masias, A., & Miller, T. (2018). Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nature Energy, 3(4), 261–266. https://doi.org/10.1038/s41560-018-0122-3

    Article  Google Scholar 

  56. United Nations, “Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train, Addendum 99: Regulation No. 100, rev. 2, New York: United Nations, Aug 12, 2013.

  57. H. Jung, B. Moon, S. Lee, and J. Bae, “A STUDY ON THERMAL ENERGY AT FIRE RESISTANCE TEST FOR REESS.” 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Detroit, Michigan. 2017.

  58. United Nations Economic commission for Europe, “Manual of Tests and Criteria” Seventh revised edition. December 2019. https://doi.org/10.18356/390e2d1a-en

  59. United Nations Economic Commission for Europe, “Global Technical Regulation on the Electric Vehicle Safety (EVS)” ECE/TRANS/180/Add.20. In: 1998 Agreement on Global Technical Regulations Addendum 20, 1998. https://unece.org/transport/standards/transport/vehicle-regulations-wp29/global-technical-regulations-gtrs

  60. Wu, X., Song, K., Zhang, X., Hu, N., Li, L., Li, W., & Zhang, H. (2019). Safety issues in lithium ion batteries: Materials and cell design. Frontiers in Energy Research, 7, 65. https://doi.org/10.3389/fenrg.2019.00065

    Article  Google Scholar 

  61. Liu, X., Ren, D., Hsu, H., Feng, X., Xu, G. L., Zhuang, M., Gao, H., Lu, L., Han, X., Chu, Z., Li, J., He, X., Amine, K., & Ouyang, M. (2018). Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2(10), 2047–2064. https://doi.org/10.1016/j.joule.2018.06.015

    Article  Google Scholar 

  62. Liu, K., Liu, Y., Lin, D., Pei, A., & Cui, Y. (2018). Materials for lithium-ion battery safety. Science Advances. https://doi.org/10.1126/sciadv.aas9820

    Article  Google Scholar 

  63. Ahmed, S., Bloom, I., Jansen, A. N., Tanim, T., Dufek, E. J., Pesaran, A., & Zhang, J. (2017). Enabling fast charging–A battery technology gap assessment. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2017.06.055

    Article  Google Scholar 

  64. Bommier, C., Chang, W., Lu, Y., Yeung, J., Davies, G., Mohr, R., & Steingart, D. (2020). In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells. Cell Reports Physical Science. https://doi.org/10.1016/j.xcrp.2020.100035

    Article  Google Scholar 

  65. Amici, J., Asinari, P., Ayerbe, E., Barboux, P., Bayle-Guillemaud, P., Behm, R. J., & Edström, K. (2022). A roadmap for transforming research to invent the batteries of the future designed within the european large scale research initiative battery 2030+. Advanced Energy Materials, 12(17), 2102785. https://doi.org/10.1002/aenm.202102785

    Article  Google Scholar 

  66. Clean Energy Materials Innovation Challenge Expert Workshop. (2020). Materials Acceleration Platform Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence. UC Office of the President: UC-Mexico Initiative. Retrieved from https://escholarship.org/uc/item/3926s13w

  67. Vegge, T., Tarascon, J. M., & Edström, K. (2021). Toward better and smarter batteries by combining ai with multisensory and self-healing approaches. Advanced Energy Materials, 11(23), 2100362. https://doi.org/10.1002/aenm.202100362

    Article  Google Scholar 

  68. Seifrid, M., Hickman, R. J., Aguilar-Granda, A., Lavigne, C., Vestfrid, J., Wu, T. C., & Aspuru-Guzik, A. (2022). Routescore: punching the ticket to more efficient materials development. ACS Central Science, 8(1), 122–131. https://doi.org/10.1021/acscentsci.1c01002

    Article  Google Scholar 

  69. Atkins, D., Ayerbe, E., Benayad, A., Capone, F. G., Capria, E., Castelli, I. E., Cekic-Laskovic, I., Ciria, R., Dudy, L., Edstrom, K., Johnson, M. R., Li, H., Lastra, J. M. G., De Souza, M. L., Meunier, V., Morcrette, M., Reichert, H., Simon, P., Rueff, J. P., … Grimaud, A. (2022). Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives. Advanced Energy Materials, 12(17), 2102687. https://doi.org/10.1002/aenm.202102687

    Article  Google Scholar 

  70. Philippot, M., Alvarez, G., Ayerbe, E., van Mierlo, J., & Messagie, M. (2019). Eco-efficiency of a lithium-ion battery for electric vehicles: Influence of manufacturing country and commodity prices on GHG emissions and costs. Batteries, 5(1), 23. https://doi.org/10.3390/batteries5010023

    Article  Google Scholar 

  71. Narayan, R., Laberty-Robert, C., Pelta, J., Tarascon, J. M., & Dominko, R. (2022). Self-healing: an emerging technology for next-generation smart batteries. Advanced Energy Materials, 12(17), 2102652. https://doi.org/10.1002/aenm.202102652

    Article  Google Scholar 

  72. Senyshyn, A., Mühlbauer, M. J., Nikolowski, K., Pirling, T., & Ehrenberg, H. (2012). ‘In-operando’ neutron scattering studies on Li-ion batteries. Journal of Power Sources, 203, 126–129. https://doi.org/10.1016/j.jpowsour.2011.12.007

    Article  Google Scholar 

  73. Bergman, S. D., & Wudl, F. (2008). Mendable polymers. Journal of Materials Chemistry, 18(1), 41–62. https://doi.org/10.1039/b713953p

    Article  Google Scholar 

  74. Wang, H., Wang, P., Feng, Y., Liu, J., Wang, J., Hu, M., & Huang, Y. (2019). Recent advances on self-healing materials and batteries. ChemElectroChem, 6(6), 1605–1622. https://doi.org/10.1002/celc.201801612

    Article  Google Scholar 

  75. Kwon, T. W., Choi, J. W., & Coskun, A. (2019). Prospect for supramolecular chemistry in high-energy-density rechargeable batteries. Joule, 3(3), 662–682. https://doi.org/10.1016/j.joule.2019.01.006

    Article  Google Scholar 

  76. Sharpe, R., van Lopik, K., Neal, A., Goodall, P., Conway, P. P., & West, A. A. (2019). An industrial evaluation of an Industry 4.0 reference architecture demonstrating the need for the inclusion of security and human components. Computers in Industry, 108, 37–44. https://doi.org/10.1016/j.compind.2019.02.007

    Article  Google Scholar 

  77. Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital Twin in CPS-based production systems. Procedia Manufacturing, 11, 939–948. https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  78. Liu, K., Wei, Z., Yang, Z., & Li, K. (2021). Mass load prediction for lithium-ion battery electrode clean production: a machine learning approach. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.125159

    Article  Google Scholar 

  79. The European Parliament And The Council Of The Euro-Pean Union. (2006). DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCILof 6 September 2006on batteries and accumulators and waste batteries and accumulators and repealing Directive91/157/EEC. http://data.europa.eu/eli/dir/2006/66/oj

  80. Yao, W., Zhang, Z., Gao, J., Li, J., Xu, J., Wang, Z., & Yang, Y. (2009). Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries. Energy & Environmental Science, 2(10), 1102–1108. https://doi.org/10.1039/b905162g

    Article  Google Scholar 

  81. Wang, R., Li, X., Wang, Z., & Zhang, H. (2017). Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy, 34, 131–140. https://doi.org/10.1016/j.nanoen.2017.02.037

    Article  Google Scholar 

  82. Ushirogata, K., Sodeyama, K., Okuno, Y., & Tateyama, Y. (2013). Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery. Journal of the American Chemical Society, 135(32), 11967–11974. https://doi.org/10.1021/ja405079s

    Article  Google Scholar 

  83. Leggesse, E. G., & Jiang, J. C. (2012). Theoretical study of the reductive decomposition of ethylene sulfite: a film-forming electrolyte additive in lithium ion batteries. Journal of Physical Chemistry A, 116(45), 11025–11033. https://doi.org/10.1021/jp3081996

    Article  Google Scholar 

  84. Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22(3), 587–603. https://doi.org/10.1021/cm901452z

    Article  Google Scholar 

  85. Armand, M. B. (1986). Polymer electrolytes. Ann Rev Mater. https://doi.org/10.1146/annurev.ms.16.080186.001333

    Article  Google Scholar 

  86. Scrosati, B. (1995). Challenge of portable power. Nature, 373, 557–558. https://doi.org/10.1038/373557a0

    Article  Google Scholar 

  87. Behera, Ajit, and Ajit Behera. “Energy Harvesting and Storing Materials.” Advanced Materials: An Introduction to Modern Materials Science (2022): 507–555.

  88. Boz, B., Ford, H. O., Salvadori, A., & Schaefer, J. L. (2021). Porous polymer gel electrolytes influence lithium transference number and cycling in lithium-ion batteries. Electronic Materials, 2(2), 154–173. https://doi.org/10.3390/electronicmat2020013

    Article  Google Scholar 

  89. Fenton, D. E. (1973). Complexes of alkali metal ions with poly (Haracte oxide). Polymer, 14, 589.

    Article  Google Scholar 

  90. Armand, M. B., Chabagno, J. M., & Duclot, M. J. (1979). Fast ion transport in solids. Electrodes and Electrolytes, 131.

  91. Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J. P., & Armand, M. (2013). Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature materials, 12(5), 452–457. https://doi.org/10.1038/nmat3602

    Article  Google Scholar 

  92. Imanishi, N., & Yamamoto, O. (2013). Polymer electrolytes for Lithium-air batteries. Lithium Batteries Advanced Technologies and Applications. https://doi.org/10.1002/9781118615515.ch10

    Article  Google Scholar 

  93. Meyer, W. H. (1998). Polymer electrolytes for lithium-ion batteries. Advanced Materials, 10(6), 439–448. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6%3c439::AID-ADMA439%3e3.0.CO;2-I

    Article  Google Scholar 

  94. Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., & Chen, L. (2016). All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139–164. https://doi.org/10.1016/j.ensm.2016.07.003

    Article  Google Scholar 

  95. Ahmad, S. (2009). Polymer electrolytes: Characteristics and peculiarities. Ionics (Kiel), 15(3), 309–321. https://doi.org/10.1007/s11581-008-0309-x

    Article  Google Scholar 

  96. Hallinan, D. T., & Balsara, N. P. (2013). Polymer electrolytes. Annual Review of Materials Research. https://doi.org/10.1146/annurev-matsci-071312-121705

    Article  Google Scholar 

  97. D. E. Fenton, M. Parker, and P. v Wright, “A-l) 1966, 4, 1563,” 1964.

  98. Scrosati, B., & Vincent, C. A. (2000). Polymer electrolytes: the key to lithium polymer batteries. Mrs Bulletin, 25(3), 28–30.

    Article  Google Scholar 

  99. G. G. Cameron, “Polymer electrolyte reviews-l edited by J. R. MacCallum and C. A. Vincent, Elsevier Applied Science Publishers, London, 1987. Pp. x + 351, price £48.00. ISBN 1–85166–07 1–2,” British Polymer Journal, 20 (3) 299–300, 1988

  100. Ib, I., Olsen, R. K., & Skou, E. (1995). Transference Number Measurements on a Hybrid Polyer Electrolyte. Electrochimica Acta, 40(11), 1701–1706.

    Article  Google Scholar 

  101. Agrawal, R. C., & Pandey, G. P. (2008). Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics. D. Applied Physics. https://doi.org/10.1088/0022-3727/41/22/223001

    Article  Google Scholar 

  102. Echeverri, M., Kim, N., & Kyu, T. (2012). Ionic conductivity in relation to ternary phase diagram of poly(ethylene oxide), succinonitrile, and lithium bis(trifluoromethane)sulfonyl imide blends. Macromolecules, 45(15), 6068–6077. https://doi.org/10.1021/ma3008509

    Article  Google Scholar 

  103. Scorsati, B. (2000). Polymer electrolytes: the key to Lithiumpolymer batteries. MRS Bulletin. https://doi.org/10.1557/mrs2000.15

    Article  Google Scholar 

  104. Petersen, G., Jacobson, P., & Torell, L. M. (1992). A raman study interactions of Ion-polymer and Ion-Ion interactions in low molecular weight polyether–LiCF3SO3 complexes. Electrochimica Acta, 37(9), 1495–1497.

    Article  Google Scholar 

  105. Bruce, P. G., & Vincent, C. A. (1989). Effect of Ion association on transport in polymer electrolytes. Faraday Discussions of the Chemical Society, 88, 43–54. https://doi.org/10.1039/DC9898800043

    Article  Google Scholar 

  106. Lightfoot, P., Mehta, M. A., & Bruce, P. G. (1993). Crystal structure of the polymer electrolyte poly (ethylene oxide) 3: LiCF3SO3. Science, 262(5135), 883–885.

    Article  Google Scholar 

  107. Benrabah, D., Baril, D., Sanchez, J.-Y., Armand, M., & Gard, G. G. (1993). Comparative electrochemical study of new poly(oxyethy1ene)-Li salt complexes. Faraday Discussions of the Chemical Society, 89, 355–359. https://doi.org/10.1039/FT9938900355

    Article  Google Scholar 

  108. Wilson, D. J., Nicholas, C. V., Mobbs, R. H., Booth, C., & Giles, J. R. M. (1990). “Synthesis of block copolymers based on oxyethylene chains and their use as polymer electrolytes. British Polymer Journal. https://doi.org/10.1002/pi.4980220206

    Article  Google Scholar 

  109. Chintapalli, S., & Frech, R. (1996). Effect of plasticizers on Ionic association and conductivity in the (PEO) 9 LiCF3SO3 system. Macromolecules, 29(10), 3499–3506. https://doi.org/10.1021/ma9515644

    Article  Google Scholar 

  110. Kim, Y.-T., & Smotkin, E. S. (2002). The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries. Solid State Ionics, 149(1–2), 29–37.

    Article  Google Scholar 

  111. Das, S., & Ghosh, A. (2015). Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Advances. https://doi.org/10.1063/1.4913320

    Article  Google Scholar 

  112. Frech, R., & Chintapalli, S. (1996). Effect of propylene carbonate as a plasticizer in high molecular weight PEO LiCF3SO3 electrolytes. Solid State Ionics, 85(1–4), 61–66. https://doi.org/10.1016/0167-2738(96)00041-0

    Article  Google Scholar 

  113. Kelly, I. E., Owen, J. R., & Steele, B. C. H. (1985). Poly (ethylene oxide) electrolytes for operation at near room temperature. Journal of Power Sources, 14(1–3), 13–21. https://doi.org/10.1016/0378-7753(85)88004-6

    Article  Google Scholar 

  114. Wang, C., Liu, Q., Cao, Q., & Meng, Q. (1992). Investigation on the structure and the conductivity of plasticized polymer electrolytes. Solid State Ionics. https://doi.org/10.1016/0167-2738(92)90298-4

    Article  Google Scholar 

  115. Porcarelli, L., Gerbaldi, C., Bella, F., & Nair, J. R. (2016). Super Soft All-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Science and Reports, 6, 19892. https://doi.org/10.1038/srep19892

    Article  Google Scholar 

  116. Michael, M. S., Jacob, M. M. E., Prabaharan, S. R. S., & Radhakrishna, S. (1997). Enhanced lithium-ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics, 98(3–4), 167–174. https://doi.org/10.1016/S0167-2738(97)00117-3

    Article  Google Scholar 

  117. Nicotera, I., Ranieri, G. A., Terenzi, M., Chadwick, A. V., & Webster, M. I. (2002). A study of stability of plasticized PEO electrolytes. Solid State Ionics, 146(1–2), 143–150. https://doi.org/10.1016/S0167-2738(01)01003-7

    Article  Google Scholar 

  118. Angell, C. A., Liu, C., & Sanchez, E. (1993). Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature, 362(6416), 137–139.

    Article  Google Scholar 

  119. Ferry, A., Edman, L., Forsyth, M., MacFarlane, D. R., & Sun, J. (1999). Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF3SO3. Journal of Applied Physics, 86(4), 2346–2348. https://doi.org/10.1063/1.371053

    Article  Google Scholar 

  120. Bushkova, O. V., Zhukovsky, V. M., Lirova, B. I., & Kruglyashov, A. L. (1999). Fast ionic transport in solid polymer electrolytes based on acrylonitrile copolymers. Solid State Ionics, 119(1–4), 217–222. https://doi.org/10.1016/S0167-2738(98)00506-2

    Article  Google Scholar 

  121. Mishra, R., Baskaran, N., Ramakrishnan, P. A., & Rao, K. J. (1998). Lithium-ion conduction in extreme polymer in salt regime. Solid State Ionics, 112(3–3), 261–273. https://doi.org/10.1016/S0167-2738(98)00209-4

    Article  Google Scholar 

  122. Croce, F., Appetecchi, G. B., Persi, L., & Scrosati, B. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature, 394(6692), 456–458.

    Article  Google Scholar 

  123. Appetecchi, G. B., Scaccia, S., & Passerini, S. (2000). Investigation on the stability of the lithium-polymer electrolyte interface. Journal of the Electrochemical Society, 147(12), 4448–4452. https://doi.org/10.1149/1.1394084

    Article  Google Scholar 

  124. Bronstein, L. M., Karlinsey, R. L., Ritter, K., Joo, C. G., Stein, B., & Zwanziger, J. W. (2004). Design of organic-inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry, 14(12), 1812–1820. https://doi.org/10.1039/b401826e

    Article  Google Scholar 

  125. Itoh, T., Miyamura, Y., Ichikawa, Y., Uno, T., Kubo, M., & Yamamoto, O. (2003). Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. Journal of Power Sources, 119–121, 403–408. https://doi.org/10.1016/S0378-7753(03)00261-1

    Article  Google Scholar 

  126. Skaarup, S., West, K., & Zachau-Christiansen, B. (1988). Mixed phase solid electrolytes. Solid State lonics. https://doi.org/10.1016/0167-2738(88)90314-1

    Article  Google Scholar 

  127. Wieczorek, W. (1992). Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes. Materials Science and Engineering B, 15(2), 108–114. https://doi.org/10.1016/0921-5107(92)90041-7

    Article  Google Scholar 

  128. Capuano, F., Croce, F., & Scrosati, B. (1991). Composite polymer electrolytes. Journal of the Electrochemical Society, 138(7), 1918.

    Article  Google Scholar 

  129. Forsyth, M., MacFarlane, D. R., Best, A., Adebahr, J., Jacobsson, P., & Hill, A. J. (2002). The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 147(3–4), 203–211. https://doi.org/10.1016/S0167-2738(02)00017-6

    Article  Google Scholar 

  130. Liu, Y., Lee, J. Y., & Hong, L. (2002). Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. Journal of Power Sources, 109(2), 507–514. https://doi.org/10.1016/S0378-7753(02)00167-2

    Article  Google Scholar 

  131. Croce, F., Settimi, L., & Scrosati, B. (2006). Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochemistry Communications, 8(2), 364–368. https://doi.org/10.1016/j.elecom.2005.12.002

    Article  Google Scholar 

  132. Croce, F., Sacchetti, S., & Scrosati, B. (2006). Advanced, lithium batteries based on high-performance composite polymer electrolytes. Journal of Power Sources, 162(1), 685–689. https://doi.org/10.1016/j.jpowsour.2006.07.038

    Article  Google Scholar 

  133. Xi, J., Qiu, X., Zheng, S., & Tang, X. (2005). Nanocomposite polymer electrolyte comprising PEO/LiClO4 and solid super acid: Effect of sulphated-zirconia on the crystallization kinetics of PEO. Polymer (Guildf), 46(15), 5702–5706. https://doi.org/10.1016/j.polymer.2005.05.051

    Article  Google Scholar 

  134. S. Abbrent, S. Greenbaum, E. Peled, and D. Golodnitsky, “Polymer Electrolytes.” In: Handbook of Solid State Batteries, 2nd ed. N.J. Dudney, W.C. West, and J. Nanda (eds.). Singapore: World Scientific. 2015 https://doi.org/10.1142/9789814651905_0016.

  135. Varzi, A., Raccichini, R., Passerini, S., & Scrosati, B. (2016). Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A Mater, 4(44), 17251–17259. https://doi.org/10.1039/c6ta07384k

    Article  Google Scholar 

  136. Bocharova, V., & Sokolov, A. P. (2020). Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules, American Chemical Society. https://doi.org/10.1021/acs.macromol.9b02742

    Article  Google Scholar 

  137. Strauss, E., Menkin, S., & Golodnitsky, D. (2017). On the way to high-conductivity single lithium-ion conductors. Journal of Solid State Electrochemistry, 21(7), 1879–1905. https://doi.org/10.1007/s10008-017-3638-8

    Article  Google Scholar 

  138. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M., & Chen, Z. (2017). Review—practical challenges hindering the development of solid state Li Ion batteries. Journal of the Electrochemical Society, 164(7), A1731–A1744. https://doi.org/10.1149/2.1571707jes

    Article  Google Scholar 

  139. Golodnitsky, D., Ardel, G., Strauss, E., Peled, E., Lareah, Y., & Rosenberg, Y. (1997). Conduction mechanisms in concentrated Lu-polyethylene Oxide-A1203-based solid electrolytes. Journal of the Electrochemical Society, 144(10), 3484–3491. https://doi.org/10.1149/1.1838037

    Article  Google Scholar 

  140. Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., & Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067–4076. https://doi.org/10.1016/j.polymer.2014.06.085

    Article  Google Scholar 

  141. Golodnitsky, D., Strauss, E., Peled, E., & Greenbaum, S. (2015). Review—on order and disorder in polymer electrolytes. Journal of the Electrochemical Society, 162(14), A2551–A2566. https://doi.org/10.1149/2.0161514jes

    Article  Google Scholar 

  142. Blanga, R., Burstein, L., Berman, M., Greenbaum, S. G., & Golodnitsky, D. (2015). Solid polymer-in-ceramic electrolyte formed by electrophoretic deposition. Journal of the Electrochemical Society, 162(11), D3084–D3089. https://doi.org/10.1149/2.0221511jes

    Article  Google Scholar 

  143. Menkin, S., Lifshitz, M., Haimovich, A., Goor, H., Blanga, R., Greenbaum, S. G., & Golodnitsky, D. (2019). Evaluation of ion-transport in composite polymer-in-ceramic electrolytes. case study of active and inert ceramics. Electrochimica Acta, 304, 447–455. https://doi.org/10.1016/j.electacta.2019.03.006

    Article  Google Scholar 

  144. Kumar, B., & Scanlon, L. G. (1994). Polymer-ceramic composite electrolytes. Journal of Power Sources, 52(2), 261–268. https://doi.org/10.1016/0378-7753(94)02147-3

    Article  Google Scholar 

  145. Abraham, K. M. (1993). Highly conductive polymer electrolytes. Applications of electroactive polymer. https://doi.org/10.1007/978-94-011-1568-1_3

    Article  Google Scholar 

  146. Dai, Y., Wang, Y., Greenbaum, S. G., Bajue, S. A., Golodnitsky, D., Ardel, G., & Peled, E. (1998). Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochimica acta, 43(10–11), 1557–1561. https://doi.org/10.1016/S0013-4686(97)10053-6

    Article  Google Scholar 

  147. Horowitz, Y., Lifshitz, M., Greenbaum, A., Feldman, Y., Greenbaum, S., Sokolov, A. P., & Golodnitsky, D. (2020). polymer/ceramic interface barriers: the fundamental challenge for advancing composite solid electrolytes for Li-ion batteries. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/abcd12

    Article  Google Scholar 

  148. Tang, S., Guo, W., & Fu, Y. (2021). Advances in composite polymer electrolytes for lithium batteries and beyond. Advanced Energy Materials, 11(2), 2000802. https://doi.org/10.1002/aenm.202000802

    Article  Google Scholar 

  149. Appetecchi, G. B., Croce, F., & Scrosati, B. (1995). Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta, 40(8), 991–997. https://doi.org/10.1016/0013-4686(94)00345-2

    Article  Google Scholar 

  150. Ahmed, H. T., Jalal, V. J., Tahir, D. A., Mohamad, A. H., & Abdullah, O. G. (2019). Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results Phys. https://doi.org/10.1016/j.rinp.2019.102735

    Article  Google Scholar 

  151. Verdier, N., Lepage, D., Zidani, R., Prebe, A., Ayme-Perrot, D., Pellerin, C., & Rochefort, D. (2019). Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-Ion battery. ACS Applied Energy Materials, 3(1), 1099–1110. https://doi.org/10.1021/acsaem.9b02129

    Article  Google Scholar 

  152. Tseng, Y. C., Hsiang, S. H., Lee, T. Y., Teng, H., Jan, J. S., & Kyu, T. (2021). In Situ polymerized electrolytes with fully cross-linked networks boosting high ionic conductivity and capacity retention for lithium Ion batteries. ACS Applied Energy Materials, 4(12), 14309–14322. https://doi.org/10.1021/acsaem.1c03011

    Article  Google Scholar 

  153. Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., & Dokko, K. (2017). Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 117(10), 7190–7239. https://doi.org/10.1021/acs.chemrev.6b00504

    Article  Google Scholar 

  154. X. He, Y. Ni, Y. Hou, Y. Lu, S. Jin, H. Li, Z. Yan, K. Zhang, J. Chen, “Insights into the Ionic Conduction Mechanism of Quasi-Solid Polymer Electrolytes through Multispectral Characterization,” Angewandte Chemie – International Edition, 2021 https://doi.org/10.1002/anie.202107648.

  155. Tripathi, A. K. (2021). Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery. Materials Today Energy. https://doi.org/10.1016/j.mtener.2021.100643

    Article  Google Scholar 

  156. Li, W., Pang, Y., Liu, J., Liu, G., Wang, Y., & Xia, Y. (2017). A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 7(38), 23494–23501. https://doi.org/10.1039/c7ra02603j

    Article  Google Scholar 

  157. Zuo, X., Ma, X., Wu, J., Deng, X., Xiao, X., Liu, J., & Nan, J. (2018). Self-supporting ethyl cellulose/poly (vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries. Electrochimica Acta, 271, 582–590. https://doi.org/10.1016/j.electacta.2018.03.195

    Article  Google Scholar 

  158. Zhang, M. Y., Li, M. X., Chang, Z., Wang, Y. F., Gao, J., Zhu, Y. S., & Huang, W. (2017). A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochimica acta, 245, 752–759. https://doi.org/10.1016/j.electacta.2017.05.154

    Article  Google Scholar 

  159. Zhou, L., Wu, N., Cao, Q., Jing, B., Wang, X., Wang, Q., & Kuang, H. (2013). A novel electrospun PVDF/PMMA gel polymer electrolyte within situ TiO2 for Li-ion batteries. Solid State Ionics, 249, 93–97. https://doi.org/10.1016/j.ssi.2013.07.019

    Article  Google Scholar 

  160. Kufian, M. Z., Aziz, M. F., Shukur, M. F., Rahim, A. S., Ariffin, N. E., Shuhaimi, N. E. A., & Arof, A. K. (2012). PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics, 208, 36–42. https://doi.org/10.1016/j.ssi.2011.11.032

    Article  Google Scholar 

  161. Deng, X., Huang, Y., Song, A., Liu, B., Yin, Z., Wu, Y., & Cao, H. (2019). Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. Materials Chemistry and Physics, 229, 232–241. https://doi.org/10.1016/j.matchemphys.2019.03.014

    Article  Google Scholar 

  162. J. Thornton, “Environmental Impacts of Polyvinyl Chloride (PVC) Building Materials A briefing paper for the Healthy Building Network.” Available at: http://mts.sustainableproducts.com/ SmaRT/ThorntonRevised.pdf

  163. Huang, X. (2013). Cellular porous polyvinylidene fluoride composite membranes for lithium-ion batteries. Journal of Solid State Electrochemistry, 17(3), 591–597. https://doi.org/10.1007/s10008-012-1891-4

    Article  Google Scholar 

  164. Gong, W., Wei, S., Ruan, S., & Shen, C. (2019). Electrospun coaxial PPESK/PVDF fibrous membranes with thermal shutdown property used for lithium-ion batteries. Materials Letters, 244, 126–129. https://doi.org/10.1016/j.matlet.2019.02.009

    Article  Google Scholar 

  165. Sun, X., Liu, G., Li, R., Meng, Y., & Wu, J. (2021). Polyporous PVDF/TiO2 photocatalytic composites for photocatalyst fixation, recycle, and repair. Journal of the American Ceramic Society, 104(12), 6290–6298. https://doi.org/10.1111/jace.18034

    Article  Google Scholar 

  166. Zhao, Y., Fang, L. Z., Kang, Y. Q., Wang, L., Zhou, Y. N., Liu, X. Y., & Li, B. H. (2021). A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Metals, 40, 1431–1436. https://doi.org/10.1007/s12598-020-01587-y

    Article  Google Scholar 

  167. Xu, P., Chen, H., Zhou, X., & Xiang, H. (2021). Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery. J Memb Sci. https://doi.org/10.1016/j.memsci.2020.118660

    Article  Google Scholar 

  168. Hosseinioun, A., Nürnberg, P., Schönhoff, M., Diddens, D., & Paillard, E. (2019). Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte. RSC Advances, 9(47), 27574–27582. https://doi.org/10.1039/c9ra05917b

    Article  Google Scholar 

  169. Kaminsky, W., & Franck, J. (1991). Monomer recovery by pyrolysis of poly( methyl methacrylate) (PMMA). Journal of Analytical and Applied Pyrolysis, 19, 311–318. https://doi.org/10.1016/0165-2370(91)80052-A

    Article  Google Scholar 

  170. Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer science, 28(6), 963–1014.

    Article  Google Scholar 

  171. Alipoori, S., Mazinani, S., Aboutalebi, S. H., & Sharif, F. (2020). Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. Journal of Energy Storage. https://doi.org/10.1016/j.est.2019.101072

    Article  Google Scholar 

  172. Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li-Ion batteries: chemistry and recycling. Advanced Energy Materials, 11(43), 2003456. https://doi.org/10.1002/aenm.202003456

    Article  Google Scholar 

  173. Han, Y. H., Han, S. O., Cho, D., & Kim, H. I. L. (2007). Kenaf/polypropylene biocomposites: Effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Composite Interfaces. https://doi.org/10.1163/156855407781291272

    Article  Google Scholar 

  174. Wohlert, M., Benselfelt, T., Wågberg, L., Furó, I., Berglund, L. A., & Wohlert, J. (2022). Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose, 29, 1–23. https://doi.org/10.1007/s10570-021-04325-4

    Article  Google Scholar 

  175. Du, Z., Su, Y., Qu, Y., Zhao, L., Jia, X., Mo, Y., Yu, F., Du, J., & Chen, Y. (2019). A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochimica acta, 299, 19–26. https://doi.org/10.1016/j.electacta.2018.12.173

    Article  Google Scholar 

  176. Chun, S. J., Lee, S. Y., Doh, G. H., Lee, S., & Kim, J. H. (2011). Preparation of ultrastrength nanopapers using cellulose nanofibrils. Journal of Industrial and Engineering Chemistry, 17(3), 521–526. https://doi.org/10.1016/j.jiec.2010.10.022

    Article  Google Scholar 

  177. Leo Edward, M., Dharanibalaji, K. C., Kumar, K. T., Chandrabose, A. R. S., Shanmugharaj, A. M., & Jaisankar, V. (2022). Preparation and haracterization of chitosan extracted from shrimp shell (Penaeus monodon) and chitosan-based blended solid polymer electrolyte for lithium-ion batteries. Polymer Bulletin. https://doi.org/10.1007/s00289-020-03472-1

    Article  Google Scholar 

  178. Xu, D., Jin, J., Chen, C., & Wen, Z. (2018). From nature to energy storage: a novel sustainable 3D cross-linked chitosan-PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS Applied Materials & Interfaces, 10(44), 38526–38537. https://doi.org/10.1021/acsami.8b15247

    Article  Google Scholar 

  179. Osinska-Broniarz, M., Gieparda, W., Wesolek, D., Martyla, A., Przekop, R., & Sierczynska, A. (2015). Preparation and characterization of gel polymer electrolytes based on electrospun PLA/PHB membranes for Lithium-Ion batteries. ECS Transactions, 70(1), 79–88. https://doi.org/10.1149/07001.0079ecst

    Article  Google Scholar 

  180. Zhu, M., Lan, J., Tan, C., Sui, G., & Yang, X. (2016). Degradable cellulose acetate/poly-l-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J Mater Chem A Mater, 4, 12136–12143. https://doi.org/10.1039/c6ta05207j

    Article  Google Scholar 

  181. Piana, G., Ricciardi, M., Bella, F., Cucciniello, R., Proto, A., & Gerbaldi, C. (2020). Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2019.122934

    Article  Google Scholar 

  182. Kim, S. K., Yoon, Y., Ryu, J. H., Kim, J. H., Ji, S., Song, W., Myung, S., Lim, J., Jung, H. K., Lee, S. S., Lee, J., & An, K. S. (2020). Recyclable high-performance polymer electrolyte based on a modified methyl cellulose-lithium Trifluoromethanesulfonate salt composite for sustainable energy systems. Chemsuschem, 13(2), 376–384. https://doi.org/10.1002/cssc.201902756

    Article  Google Scholar 

  183. Tenhaeff, W. E., & Kalnaus, S. (2015). Designing solid polymer composite electrolytes for facile lithium transport and mechanical strength. Handbook of Solid State Batteries. https://doi.org/10.1142/9789814651905_0007

    Article  Google Scholar 

  184. Judez, X., Zhang, H., Li, C., Eshetu, G. G., González-Marcos, J. A., Armand, M., & Rodriguez-Martinez, L. M. (2017). Solid electrolytes for safe and high energy density lithium-sulfur batteries: Promises and challenges. Journal of The Electrochemical Society, 165(1), A6008. https://doi.org/10.1149/2.0041801jes

    Article  Google Scholar 

  185. Huang, X., Liu, C., Lu, Y., Xiu, T., Jin, J., Badding, M. E., & Wen, Z. (2018). A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery. Journal of Power Sources, 382, 190–197. https://doi.org/10.1016/j.jpowsour.2017.11.074

    Article  Google Scholar 

  186. Doux, J. M., Nguyen, H., Tan, D. H., Banerjee, A., Wang, X., Wu, E. A., & Meng, Y. S. (2020). Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Advanced Energy Materials, 10(1), 1903253. https://doi.org/10.1002/aenm.201903253

    Article  Google Scholar 

  187. Doux, J. M., Yang, Y., Tan, D. H., Nguyen, H., Wu, E. A., Wang, X., & Meng, Y. S. (2020). Pressure effects on sulfide electrolytes for all solid-state batteries. Journal of Materials Chemistry A, 8(10), 5049–5055. https://doi.org/10.1039/c9ta12889a

    Article  Google Scholar 

  188. Chen, A., Qu, C., Shi, Y., & Shi, F. (2020). Manufacturing strategies for solid electrolyte in Batteries. Frontiers in Energy Research. https://doi.org/10.3389/fenrg.2020.571440

    Article  Google Scholar 

  189. Appetecchi, G. B., Alessandrini, F., Carewska, M., Caruso, T., Prosini, P. P., Scaccia, S., & Passerini, S. (2001). Investigation on lithium–polymer electrolyte batteries. Journal of power sources, 97, 790–794. https://doi.org/10.1016/S0378-7753(01)00609-7

    Article  Google Scholar 

  190. Nguyen, H., Banerjee, A., Wang, X., Tan, D., Wu, E. A., Doux, J. M., Stephens, R., Verbist, G., & Meng, Y. S. (2019). Single-step synthesis of highly conductive Na3PS4 solid electrolyte for sodium all solid-state batteries. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2019.05.031

    Article  Google Scholar 

  191. Hafner, S., Guthrey, H., Lee, S. H., & Ban, C. (2019). Synchronized electrospinning and electrospraying technique for manufacturing of all-solid-state lithium-ion batteries. Journal of Power Sources, 431, 17–24. https://doi.org/10.1016/j.jpowsour.2019.05.008

    Article  Google Scholar 

  192. Commarieu, B., Paolella, A., Daigle, J. C., & Zaghib, K. (2018). Toward high lithium conduction in solid polymer and polymer–ceramic batteries. Current Opinion in Electrochemistry. https://doi.org/10.1016/j.coelec.2018.03.033

    Article  Google Scholar 

  193. Tan, S. J., Zeng, X. X., Ma, Q., Wu, X. W., & Guo, Y. G. (2018). Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochemical Energy Reviews, 1(2), 113–138. https://doi.org/10.1007/s41918-018-0011-2

    Article  Google Scholar 

  194. Li, S., Zhang, S. Q., Shen, L., Liu, Q., Ma, J. B., Lv, W., & Yang, Q. H. (2020). Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science, 7(5), 1903088. https://doi.org/10.1002/advs.201903088

    Article  Google Scholar 

  195. Cavaliere, S., Subianto, S., Savych, I., Jones, D. J., & Rozière, J. (2011). Electrospinning: designed architectures for energy conversion and storage devices. Energy and Environmental Science, 4(12), 4761–4785. https://doi.org/10.1039/c1ee02201f

    Article  Google Scholar 

  196. Pang, Y., Cao, Y., Chu, Y., Liu, M., Snyder, K., MacKenzie, D., & Cao, C. (2020). Additive manufacturing of batteries. Advanced Functional Materials, 30(1), 1906244. https://doi.org/10.1002/adfm.201906244

    Article  Google Scholar 

  197. Strauss, E., Menkin, S., & Golodnitsky, D. (2018). Polymer electrolytes for printed batteries. Printed Batteries: Materials, Technologies and Applications, 80–111. DOI: https://doi.org/10.1002/9781119287902.ch4

  198. Oliveira, J., Costa, C. M., & Lanceros-Méndez, S. (2018). Printed batteries: an overview printed batteries: materials. Technologies and Applications. https://doi.org/10.1002/9781119287902.ch1

    Article  Google Scholar 

  199. Cheng, M., Jiang, Y., Yao, W., Yuan, Y., Deivanayagam, R., Foroozan, T., Huang, Z., Song, B., Rojaee, R., Shokuhfar, T., Pan, Y., Lu, J., & Shahbazian-Yassar, R. (2018). Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Advanced Materials, 30(39), 1800615. https://doi.org/10.1002/adma.201800615

    Article  Google Scholar 

  200. Yang, Y., Yuan, W., Zhang, X., Yuan, Y., Wang, C., Ye, Y., & Tang, Y. (2020). Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.114002

    Article  Google Scholar 

  201. Costa, C. M., Gonçalves, R., & Lanceros-Méndez, S. (2020). Recent advances and future challenges in printed batteries. Energy Storage Mater, 28, 216–234. https://doi.org/10.1016/j.ensm.2020.03.012

    Article  Google Scholar 

  202. Tehrani, Z., Korochkina, T., Govindarajan, S., Thomas, D. J., O’Mahony, J., Kettle, J., & Gethin, D. T. (2015). Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications. Organic Electronics, 26, 386–394. https://doi.org/10.1016/j.orgel.2015.08.007

    Article  Google Scholar 

  203. Kim, S. H., Choi, K. H., Cho, S. J., Choi, S., Park, S., & Lee, S. Y. (2015). Printable Solid-state lithium-ion batteries: a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Letters, 15(8), 5168–5177. https://doi.org/10.1021/acs.nanolett.5b01394

    Article  Google Scholar 

  204. D. Steingart, C. C. Ho, J. Salminen, J. W. Evans, and P. K. Wright, “Dispenser Printing of Solid Polymer-Ionic Liquid Electrolytes for Lithium Ion Cells,” 6th International Conference on Polymers and Adnesives in Microelectronics and Photonics, Tokyo, Japan. 15–18 January, 2007. Doi: https://doi.org/10.1109/POLYTR.2007.4339179.

  205. Cheng, M., Deivanayagam, R., & Shahbazian-Yassar, R. (2020). 3D Printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batteries and Supercaps, 3(2), 130–146. https://doi.org/10.1002/batt.201900130

    Article  Google Scholar 

  206. Ponnada, S., Babu Gorle, D., Chandra Bose, R. S., Sadat Kiai, M., Devi, M., Venkateswara Raju, C., Baydogan, N., Nanda, K. K., Marken, F., & Sharma, R. K. (2022). Current insight into 3D printing in solid-state lithium-Ion batteries: a perspective. Batteries & Supercaps. https://doi.org/10.1002/batt.202200223

    Article  Google Scholar 

  207. Shinde, V. V., Wang, Y., Salek, M. F., Auad, M. L., Beckingham, L. E., & Beckingham, B. S. (2022). Material design for enhancing properties of 3D printed polymer composites for target applications. Technologies (Basel). https://doi.org/10.3390/technologies10020045

    Article  Google Scholar 

  208. Zhu, C., Liu, T., Qian, F., Chen, W., Chandrasekaran, S., Yao, B., Song, Y., Duoss, E. B., Kuntz, J. D., Spadaccini, C. M., Worsley, M., & Li, Y. (2017). 3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 15, 107–120. https://doi.org/10.1016/j.nantod.2017.06.007

    Article  Google Scholar 

  209. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  210. Chu, T., Park, S., & Fu, K. (2021). 3D printing-enabled advanced electrode architecture design. Carbon Energy, 3(3), 424–439. https://doi.org/10.1002/cey2.114

    Article  Google Scholar 

  211. Kiran, A. S. K., Veluru, J. B., Merum, S., Radhamani, A. V., Doble, M., Kumar, T. S., & Ramakrishna, S. (2018). Additive manufacturing technologies: an overview of challenges and perspective of using electrospraying. Nanocomposites, 4(4), 190–214. https://doi.org/10.1080/20550324.2018.1558499

    Article  Google Scholar 

  212. Pei, M., Shi, H., Yao, F., Liang, S., Xu, Z., Pei, X., & Hu, Y. (2021). 3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures. Journal of Materials Chemistry A, 9(45), 25237–25257. https://doi.org/10.1039/d1ta06683h

    Article  Google Scholar 

  213. McOwen, D. W., Xu, S., Gong, Y., Wen, Y., Godbey, G. L., Gritton, J. E., Hamann, T. R., Dai, J., Hitz, G. T., Hu, L., & Wachsman, E. D. (2018). 3D-printing electrolytes for solid-state batteries. Advanced materials, 30(18), 1707132. https://doi.org/10.1002/adma.201707132

    Article  Google Scholar 

  214. Zhou, S., Usman, I., Wang, Y., & Pan, A. (2021). 3D printing for rechargeable lithium metal batteries. Energy Storage Materials, 38, 141–156. https://doi.org/10.1016/j.ensm.2021.02.041

    Article  Google Scholar 

  215. Lewis, J. A. (2006). Direct ink writing of 3D functional materials. Advanced Functional Materials, 16(17), 2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  Google Scholar 

  216. Matsuzaki, R., Kanatani, T., & Todoroki, A. (2019). Multi-material additive manufacturing of polymers and metals using fused filament fabrication and electroforming. Additive Manufacturing. https://doi.org/10.1016/j.addma.2019.100812

    Article  Google Scholar 

  217. Medellin, A., Du, W., Miao, G., Zou, J., Pei, Z., & Ma, C. (2019). Vat photopolymerization 3d printing of nanocomposites: A literature review. Journal of Micro and Nano-Manufacturing. https://doi.org/10.1115/1.4044288

    Article  Google Scholar 

  218. Deiner, L. J., & Reitz, T. L. (2017). Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage. Advanced Engineering Materials, 19(7), 1600878. https://doi.org/10.1002/adem.201600878

    Article  Google Scholar 

  219. He, Y., Chen, S., Nie, L., Sun, Z., Wu, X., & Liu, W. (2020). Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries. Nano Letters, 20(10), 7136–7143. https://doi.org/10.1021/acs.nanolett.0c02457

    Article  Google Scholar 

  220. Chen, Q., Xu, R., He, Z., Zhao, K., & Pan, L. (2017). Printing 3D gel polymer electrolyte in Lithium-Ion microbattery using stereolithography. Journal of the Electrochemical Society, 164(9), A1852–A1857.

    Article  Google Scholar 

  221. M. F. Norjeli, N. Tamchek, Z. Osman, I. S. Mohd Noor, M. Z. Kufian, and M. I. B. M. Ghazali, “Additive Manufacturing Polyurethane Acrylate via Stereolithography for 3D Structure Polymer Electrolyte Application,” Gels, 2022 https://doi.org/10.3390/gels8090589.

  222. Deiner, L. J., Jenkins, T., Howell, T., & Rottmayer, M. (2019). Aerosol Jet Printed Polymer Composite Electrolytes for Solid-State Li-Ion Batteries. Advanced Engineering Materials, 21(12), 1900952. https://doi.org/10.1002/adem.201900952

    Article  Google Scholar 

  223. Blake, A. J., Kohlmeyer, R. R., Hardin, J. O., Carmona, E. A., Maruyama, B., Berrigan, J. D., Huang, H., & Durstock, M. F. (2017). 3D printable ceramic–polymer electrolytes for flexible high-performance li-ion batteries with enhanced thermal stability. Advanced energy materials, 7(14), 1602920. https://doi.org/10.1002/aenm.201602920

    Article  Google Scholar 

  224. Kohlmeyer, R. R., Buskohl, P. R., Deneault, J. R., Durstock, M. F., Vaia, R. A., & Chen, J. (2014). Shape-reprogrammable polymers: Encoding, erasing, and re-encoding. Advanced Materials, 26(48), 8114–8119. https://doi.org/10.1002/adma.201402901

    Article  Google Scholar 

  225. Fu, K., Wang, Y., Yan, C., Yao, Y., Chen, Y., Dai, J., & Hu, L. (2016). Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials. https://doi.org/10.1002/adma.201505391

    Article  Google Scholar 

  226. Wei, T. S., Ahn, B. Y., Grotto, J., & Lewis, J. A. (2018). 3D Printing of customized Li-Ion batteries with thick electrodes. Advanced Materials, 30(16), 1703027. https://doi.org/10.1002/adma.201703027

    Article  Google Scholar 

  227. Muench, S., Burges, R., Lex-Balducci, A., Brendel, J. C., Jäger, M., Friebe, C., Wild, A., & Schubert, U. S. (2020). Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Materials, 25, 750–755. https://doi.org/10.1016/j.ensm.2019.09.011

    Article  Google Scholar 

  228. Cheng, M., Ramasubramanian, A., Rasul, M. G., Jiang, Y., Yuan, Y., Foroozan, T., Deivanayagam, R., Saray, M. T., Rojaee, R., Song, B., Yurkiv, V. R., Pan, Y., Mashayek, F., & Shahbazian-Yassar, R. (2021). Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities. Advanced Functional Materials, 31(4), 2006683. https://doi.org/10.1002/adfm.202006683

    Article  Google Scholar 

  229. Gambe, Y., Kobayashi, H., Iwase, K., Stauss, S., & Honma, I. (2021). A photo-curable gel electrolyte ink for 3D-printable quasi-solid-state lithium-ion batteries. Dalton Transactions, 50(45), 16504–16508. https://doi.org/10.1039/D1DT02918E

    Article  Google Scholar 

  230. Cho, K. G., Jang, S. S., Heo, I., Kyung, H., Yoo, W. C., & Lee, K. H. (2022). 3D printed solid-state composite electrodes and electrolytes for high-energy-density flexible microsupercapacitors. J Energy Storage. https://doi.org/10.1016/j.est.2022.105206

    Article  Google Scholar 

  231. Jackson, S., & Dickens, T. (2021). Rheological and structural characterization of 3D-printable polymer electrolyte inks. Polymer Testing. https://doi.org/10.1016/j.polymertesting.2021.107377

    Article  Google Scholar 

  232. Thakur, A., & Dong, X. (2020). Printing with 3D continuous carbon fiber multifunctional composites via UV-assisted coextrusion deposition. Manuf Lett, 24, 1–5. https://doi.org/10.1016/j.mfglet.2020.02.001

    Article  Google Scholar 

  233. Thakur, A., & Dong, X. (2020). Additive manufacturing of 3D structural battery composites with coextrusion deposition of continuous carbon fibers. Manuf Lett, 26, 42–47. https://doi.org/10.1016/j.mfglet.2020.09.007

    Article  Google Scholar 

  234. Seeba, J., Reuber, S., Heubner, C., Müller-Köhn, A., Wolter, M., & Michaelis, A. (2020). Extrusion-based fabrication of electrodes for high-energy Li-ion batteries. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2020.125551

    Article  Google Scholar 

  235. Cook, J. A., Park, G. B., & McLoughlin, R. (1989). MATERIALS FOR ELECTRICAL DEVICES (Patent No. 4818643). United States Patent Office.

  236. Duval, M., & Quebec, H. (1993). Process of coating by melt extrusion a solid polymer electrolyte on positive electrode of lithium battery (patent no. 5348824). united states patent office.

  237. Reyes, C., Somogyi, R., Niu, S., Cruz, M. A., Yang, F., Catenacci, M. J., & Wiley, B. J. (2018). Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Applied Energy Materials, 1(10), 5268–5279. https://doi.org/10.1021/acsaem.8b00885

    Article  Google Scholar 

  238. Maurel, A., Grugeon, S., Fleutot, B., Courty, M., Prashantha, K., Tortajada, H., Armand, M., Panier, S., & Dupont, L. (2019). Three-dimensional printing of a LiFePO4/graphite battery cell via fused deposition modeling. Scientific reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-54518-y

    Article  Google Scholar 

  239. Vinegrad, A., Ragones, H., Jayakody, N., Ardel, G., Goor, M., Kamir, Y., Dorfman, M. M., Gladkikh, A., Burstein, L., Horowitz, Y., Greenbaum, S., & Golodnitsky, D. (2021). Plasticized 3D-printed polymer electrolytes for lithium-ion batteries. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/ac39d5

    Article  Google Scholar 

  240. Ragones, H., Menkin, S., Kamir, Y., Gladkikh, A., Mukra, T., Kosa, G., & Golodnitsky, D. (2018). Towards smart free form-factor 3D printable batteries. Sustainable Energy & Fuels, 2(7), 1542–1549. https://doi.org/10.1039/c8se00122g

    Article  Google Scholar 

  241. Ragones, H., Vinegrad, A., Ardel, G., Goor, M., Kamir, Y., Dorfman, M. M., Gladkikh, A., & Golodnitsky, D. (2019). On the road to a multi-coaxial-cable battery: development of a novel 3D-printed composite solid electrolyte. Journal of The Electrochemical Society. https://doi.org/10.1149/2.0032007jes

    Article  Google Scholar 

  242. Katcharava, Z., Marinow, A., Bhandary, R., & Binder, W. H. (1859). 3D Printable composite polymer electrolytes: influence of SiO2 nanoparticles on 3D-printability. Nanomaterials, 12(11), 2022. https://doi.org/10.3390/nano12111859

    Article  Google Scholar 

  243. Maurel, A., Armand, M., Grugeon, S., Fleutot, B., Davoisne, C., Tortajada, H., Courty, M., Panier, S., & Dupont, L. (2020). Poly (ethylene oxide)− LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/ab7c38

    Article  Google Scholar 

  244. Verdier, N., Foran, G., Lepage, D., Prébé, A., Aymé-Perrot, D., & Dollé, M. (2021). Challenges in solvent-free methods for manufacturing electrodes and electrolytes for lithium-based batteries. Polymers, 13(3), 323. https://doi.org/10.3390/polym13030323

    Article  Google Scholar 

  245. Jung, K. N., Shin, H. S., Park, M. S., & Lee, J. W. (2019). Solid-state lithium batteries: bipolar design, fabrication, and electrochemistry. ChemElectroChem, 6(15), 3842–3859. https://doi.org/10.1002/celc.201900736

    Article  Google Scholar 

  246. Brown, E., Yan, P., Tekik, H., Elangovan, A., Wang, J., Lin, D., & Li, J. (2019). 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Materials & Design. https://doi.org/10.1016/j.matdes.2019.107689

    Article  Google Scholar 

  247. Down, M. P., Martínez-Periñán, E., Foster, C. W., Lorenzo, E., Smith, G. C., & Banks, C. E. (2019). Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures. Advanced Energy Materials, 9(11), 1803019. https://doi.org/10.1002/aenm.201803019

    Article  Google Scholar 

  248. Schwaar, C. (2023, January 31). Additive manufacturing for batteries of the future: Will 3D printing transform battery making? Forbes. Retrieved April 12, 2023, from https://www.forbes.com/sites/carolynschwaar/2023/01/30/additive-manufacturing-for-batteries-of-the-future-will-3d-printing-transform-battery-making/?sh=5bb74f063795

  249. Vlad Khaustovich, “3D Printing & Rapid Prototyping Services Breaking the mold: Developing technologies and a growing customer base are expected to boost revenue,” 2023.,Report no.: OD 4581.

  250. Arielle Rose, “Battery Manufacturing in the US,” IBIS World, September 2022., Report No.: 33591.

  251. Matt Pantalon, “Lithium Battery Manufacturing. In the US”, IBIS World, January 2023, OD4499.

  252. Schmaltz, T., Wicke, T., Weymann, L., Voß, P., Neef, C., & Thielmann, A. (2022). Solid-State Battery Roadmap 2035+.

  253. Sakuu to become publicly traded company Via Business Combination with plum acquisition corp.. I. Business Wire. (2023, March 2). Retrieved April 12, 2023, from https://www.businesswire.com/news/home/20230302005883/en/

  254. Blackstone's major milestone in 3D-printing solid-state batteries. Business Wire. (2021, April 12). Retrieved April 12, 2023, from https://www.businesswire.com/news/home/20210412005715/en/Blackstone%E2%80%99s-major-milestone-in-3D-printing-solid-state-batteries

  255. Arielle Rose, “Battery Recycling in the US.”, IBIS World, November 2022, Report No; OD4511

  256. Kunz, T. (2019). DOE launches its first lithium-ion battery recycling R&D center: ReCell. Retrieved April 12, 2023, from Argonne National Laboratory. Available at https:// www. anl. gov/article/doe-launches-its-first-lithiumion-battery-recycling-rd-center-recell.

  257. Cong, L., Liu, W., Kong, S., Li, H., Deng, Y., & Ma, H. (2021). A review on end-of-use management of spent lithium-ion batteries from sustainability perspective. Journal of Manufacturing Science and Engineering, 1–35. DOI: https://doi.org/10.1115/1.4050925

  258. Cong, L., Zhou, K., Liu, W., & Li, R. (2023). Retired lithium-ion battery pack disassembly line balancing based on precedence graph using a hybrid genetic-firework algorithm for remanufacturing. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4056572

    Article  Google Scholar 

  259. Li, H., Cong, L., Ma, H., Liu, W., Deng, Y., & Kong, S. (2022). Screening of retired lithium-Ion batteries using incremental capacity charging curve-based residual capacity estimation method for facilitating sustainable circular lithium-ion battery system. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/14051677

    Article  Google Scholar 

  260. Cong, L., Zhao, F., & Sutherland, J. W. (2019). A design method to improve end-of-use product value recovery for circular economy. Journal of Mechanical Design, 10(1115/1), 4041574.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation PFI project (#2214006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Won Choi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alandur Ramesh, B.R., Basnet, B., Huang, R. et al. The Promise of 3D Printed Solid Polymer Electrolytes for Developing Sustainable Batteries: A Techno-Commercial Perspective. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 321–352 (2024). https://doi.org/10.1007/s40684-023-00541-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00541-4

Keywords

Navigation