Skip to main content

Advertisement

Log in

Stability Enhancement of Reformate-Fueled, Low-Temperature Solid Oxide Fuel Cell with Nickel Thin-Film Anode by Water Bubbling

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The dry reformate and wet reformate operations of solid oxide fuel cell (SOFC) with 200 nm-thick, nanoporous Ni thin-film anode were investigated in terms of power performance at 500°C. The initial power density of the SOFC fueled with dry reformate (H2 75%, CO 10%, CO2 10%, CH4 5%) was 5% lower than that of the SOFC fueled with H2, which was almost similar to that of the SOFC fueled with wet reformate humidified by water bubbling at room temperature. The reduction rate in power density of the SOFC fueled with the dry reformate was as high as 6%/hr; the reduction rate in power density of the SOFC fueled with the wet reformate was decreased by 55% through carbon poisoning alleviation  of the Ni thin-film anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee, Y. H., Chang, I., Cho, G. Y., Park, J., Yu, W., Tanveer, W. H., & Cha, S. W. (2018). Thin film solid oxide fuel cells operating below 600°C: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 441–453.

    Article  Google Scholar 

  2. Choi, H., Cho, G. Y., & Cha, S. W. (2014). Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 95–99.

    Article  Google Scholar 

  3. Ji, S., & Kim, W. (2022). Is coating oxide on porous metal thin-film for low-temperature solid oxide fuel cell cathode a panacea for performance enhancement? International Journal of Precision Engineering and Manufacturing, 23(4), 445–451.

  4. Karimaghaloo, A., Koo, J., Kang, H.-S., Song, S. A., Shim, J. H., & Lee, M. H. (2019). Nanoscale surface and interface engineering of solid oxide fuel cells by atomic layer deposition. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 611–628.

  5. Shim, J. H., Han, G. D., Choi, H. J., Kim, Y., Xu, S., An, J., et al. (2019). Atomic layer deposition for surface engineering of solid oxide fuel cell electrodes. International Journal of Precision Engineeringand Manufacturing-Green Technology, 6(3), 629–646.

  6. Tanveer, W. H., Ji, S., Yu, W., & Cha, S. W. (2015). Characterization of atomic layer deposited and sputtered yttria-stabilized-zirconiathin films for low-temperature solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing, 16(10), 2229–2234.

  7. Ji, S. (2020). Thickness determination of a solid oxide fuel cell blocking layer prepared by atomic layer deposition considering the non-uniform surface geometry of porous substrate. International Journal of Precision Engineering and Manufacturing, 21(6), 1085–1090.

    Article  Google Scholar 

  8. Ji, S., Kim, Y., & Cha, S. W. (2022). Operating cost savings in the atomic layer deposition process of ultrathin electrolyte for solid oxide fuel cells by applying oxygen plasma. International Journal of Precision Engineering and Manufacturing, 23, 573–579.

    Article  Google Scholar 

  9. Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., Kim, Y. B., An, J., & Cha, S. W. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing, 3, 35–39.

    Article  Google Scholar 

  10. Yu, W., Ryu, S., Tanveer, W. H., Cho, G. Y., & Cha, S. W. (2020). Effects of microstructure of Ni anode on nanotemplate based low temperature solid oxide fuel cells, 21(11), 2199–2208.

  11. Cho, G. Y., Yu, W., Lee, Y. H., Lee, Y., Tanveer, W. H., Kim, Y., et al. (2020). Effects of nanoscale PEALD YSZ interlayer for AAO based thin film solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 423–430.

  12. Ji, S., Seo, H. G., Lee, S., Seo, J., Lee, Y., Tanveer, W. H., Cha, S. W., & Jung, W. (2017). Integrated design of a Ni thin-film electrode on a porous alumina template for affordable and high-performance low-temperature solid oxide fuel cells. RSC Advances, 7, 23600–23606.

    Article  Google Scholar 

  13. Ji, S., Tanveer, W. H., Yu, W., Kang, S., Cho, G. Y., Kim, S. H., An, J., & Cha, S. W. (2015). Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte. Beilstein Journal of Nanotechnology, 6, 1805–1810.

    Article  Google Scholar 

  14. Gao, Y., Jiang, J., Meng, Y., Yan, F., & Aihemaiti, A. (2018). A review of recent developments in hydrogen production via biogas dry reforming. Energy Conversion and Management, 171, 133–155.

    Article  Google Scholar 

  15. Lee, D., Myung, J., Tan, J., Hyun, S.-H., Irvine, J. T. S., Kim, J., & Moon, J. (2017). Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. Journal of Power Sources, 345, 30–40.

    Article  Google Scholar 

  16. Welander, M. M., Hu, B., & Tucker, M. C. (2022). Metal-supported solid oxide fuel cells operating with reformed natural gas and sulfur. International Journal of Hydrogen Energy, 47, 11261–11269.

    Article  Google Scholar 

  17. Ma, J., Jiang, C., Conor, P. A., Cassidy, M., & Irvine, J. T. S. (2015). Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels. Journal of Materials Chemistry A, 3, 19068.

    Article  Google Scholar 

  18. Chang, Y., Qin, Y., Yin, Y., Zhang, J., & Li, X. (2018). Humidification strategy for polymer electrolyte membrane fuel cells - a review. Applied Energy, 230, 643–662.

    Article  Google Scholar 

  19. Seo, H. G., Ji, S., Seo, J., Kim, S., Koo, B., Choi, Y., Kim, H., Kim, J. H., Kim, T.-S., & Jung, W. (2020). Sintering-resistant platinum electrode achieved through atomic layer deposition for thin-film solid oxide fuel cells. Journal of Alloys and Compounds, 835, 155347.

    Article  Google Scholar 

  20. Homel, M., Gur, T. M., Koh, J. H., & Virkar, A. V. (2010). Carbon monoxide-fueled solid oxide fuel cell. Journal of Power Sources, 195, 6367–6372.

    Article  Google Scholar 

  21. Zhao, X., Joseph, B., Kuhn, J., & Ozcan, S. (2020). Biogas reforming to syngas: a review. iScience, 23, 101082.

    Article  Google Scholar 

  22. Keipi, T., Tovanen, H., & Konttinen, J. (2018). Economic analysis of hydrogen production by methane thermal decomposition: comparison to competing technologies. Energy Conversion and Management, 159, 264–273.

    Article  Google Scholar 

  23. Ji, S., Chang, I., Lee, Y., Park, J., Paek, J., Lee, M. H., & Cha, S. W. (2013). Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition. Nanoscale Research Letters, 8, 48.

    Article  Google Scholar 

  24. Ji, S., Cho, G. Y., Yu, W., Su, P.-C., Lee, M. H., & Cha, S. W. (2015). Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Applied Materials & Interfaces, 7(5), 2998–3002.

    Article  Google Scholar 

  25. Takahashi, H., Takeguchi, T., Yamamoto, N., Matsuda, M., Kobayashi, E., & Ueda, W. (2011). Effect of interaction between Ni and YSZ on coke deposition during steam reforming of methane on Ni/YSZ anode catalysts for an IR-SOFC. Journal of Molecular Catalysis A: Chemical, 350, 69–74.

    Article  Google Scholar 

  26. Golkhatmi, S. Z., Asghar, M. I., & Lund, P. D. (2022). A review on solid oxide fuel cell durability: latest progress, mechanisms, and study tools. Renewable and Sustainable Energy Reviews, 161, 112339.

    Article  Google Scholar 

  27. Vogt, C., Kranenborg, J., & Weckhuysen, B. M. (2020). Structure sensitivity in steam and dry methane reforming over nickel: activity and carbon formation. ACS Catalysis, 10, 1428–1438.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Civil Engineering and Building Technology Projects (No. 20220081, 20220232) and the National Research Foundation of Korea Project (No. NRF-2018R1D1A1B07048082, NRF-2021M3H4A3A02086498).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghoon Ji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Kim, W., Han, S. et al. Stability Enhancement of Reformate-Fueled, Low-Temperature Solid Oxide Fuel Cell with Nickel Thin-Film Anode by Water Bubbling. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 999–1006 (2023). https://doi.org/10.1007/s40684-022-00484-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00484-2

Keywords

Navigation