Skip to main content
Log in

Feasibility and Reliability of Laser Powder Bed Fused AlSi10Mg/Wrought AA6061 Hybrid Aluminium Alloy Component

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Laser powder bed fusion (LPBF) provides an effective and economical solution for fabricating multi-material components of complex structures as it entails a layer-wise manufacturing process. The feasibility and reliability of depositing AlSi10Mg alloy on the wrought AA6061 alloy substrate using the LPBF process were studied. The study includes the analysis of metallurgical quality, microstructure evolution, mechanical properties, and corrosion behaviour of the multi-material parts before and after heat treatment. The interface region, decorated with epitaxial growth, shows excellent metallurgical bonding without apparent defects of pores and cracks. LPBF AlSi10Mg comprises fine equiaxed grains and coarse columnar grains on the boundary and inside the molten pool, respectively. They were replaced by large Si particles after heat treatment without altering the grain morphology and <100>//BD (building direction) texture. The as-built multi-material part exhibits a low ultimate tensile strength of 192.8 ± 3.4 MPa, similar to that of wrought AA6061, and a higher elongation (13.6 ± 0.5%) than the LPBF AlSi10Mg alloy (9.4 ± 0.2%). In addition, the ultimate tensile strength and elongation of the multi-material part were slightly improved after heat treatment. Compression testing showed that, in contrast to single-alloy parts, the multi-material part achieved moderate strength and good compressive capacity under both as-built and heat-treated conditions. Interestingly, the galvanic corrosion effects in the interface region are suppressed for both as-built and heat-treated multi-material parts. Moreover, the as-built multi-material sample has a higher corrosion resistance than the heat-treated one. This study verifies the feasibility of efficiently manufacturing a reliable, excellent, and low-cost multi-material component combining conventional and additive manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kieback, B., Neubrand, A., & Riedel, H. (2003). Processing techniques for functionally graded materials. Materials Science and Engineering A, 362, 81–106. https://doi.org/10.1016/S0921-5093(03)00578-1

    Article  Google Scholar 

  2. Kruth, J. P., Badrossamay, M., Yasa, E., Deckers, J., Thijs, L., & Van Humbeeck, J. (2010). Part and material properties in selective laser melting of metals. In Proceedings of the 16th International symposium on electromachining, (ISEM XVI) (pp. 3–14). Shanghai Jiao Tong Univ Press, Shanghai, China

  3. Rankouhi, B., Jahani, S., Pfefferkorn, F. E., & Thoma, D. J. (2021). Compositional grading of a 316L-Cu multi-material part using machine learning for the determination of selective laser melting process parameters. Additive Manufacturing, 38, 101836. https://doi.org/10.1016/j.addma.2021.101836

    Article  Google Scholar 

  4. Liu, Z. H., Zhang, D. Q., Sing, S. L., Chua, C. K., & Loh, L. E. (2014). Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Materials Characterization, 94, 116–125. https://doi.org/10.1016/j.matchar.2014.05.001

    Article  Google Scholar 

  5. Sing, S. L., Lam, L. P., Zhang, D. Q., Liu, Z. H., & Chua, C. K. (2015). Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. Materials Characterization, 107, 220–227. https://doi.org/10.1016/j.matchar.2015.07.007

    Article  Google Scholar 

  6. Chen, J., Yang, Y., Song, C., Zhang, M., Wu, S., & Wang, D. (2019). Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Materials Science and Engineering A, 752, 75–85. https://doi.org/10.1016/j.msea.2019.02.097

    Article  Google Scholar 

  7. Chen, K., Wang, C., Hong, Q., Wen, S., Zhou, Y., Yan, C., et al. (2020). Selective laser melting 316L/CuSn10 multi-materials: Processing optimization, interfacial characterization and mechanical property. Journal of Materials Processing Technology, 283, 116701. https://doi.org/10.1016/j.jmatprotec.2020.116701

    Article  Google Scholar 

  8. Tan, C., Chew, Y., Bi, G., Wang, D., Ma, W., Yang, Y., et al. (2020). Additive manufacturing of steel–copper functionally graded material with ultrahigh bonding strength. Journal of Materials Science and Technology, 13, 98–99. https://doi.org/10.1016/j.jmst.2020.07.044

    Article  Google Scholar 

  9. Bai, Y., Zhao, C., Zhang, Y., & Wang, H. (2021). Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel. Materials Science and Engineering A, 802, 140630. https://doi.org/10.1016/j.msea.2020.140630

    Article  Google Scholar 

  10. Hadadzadeh, A., Amirkhiz, B. S., Shakerin, S., Kelly, J., Li, J., & Mohammadi, M. (2020). Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate. Additive Manufacturing. https://doi.org/10.1016/j.addma.2019.100937

    Article  Google Scholar 

  11. Moharami, A., Razaghian, A., Babaei, B., Ojo, O. O., & Šlapáková, M. (2020). Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. Journal of Composite Materials, 54, 4035–4057. https://doi.org/10.1177/0021998320925528

    Article  Google Scholar 

  12. Zhang, X., Liu, B., Zhou, X., Wang, J., Hashimoto, T., Luo, C., et al. (2018). Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy. Corrosion Science, 135, 177–191. https://doi.org/10.1016/j.corsci.2018.02.044

    Article  Google Scholar 

  13. Wang, L., Wang, S., & Hong, X. (2018). Pulsed SLM-manufactured AlSi10Mg alloy: Mechanical properties and microstructural effects of designed laser energy densities. Journal of Manufacturing Process, 35, 492–499. https://doi.org/10.1016/j.jmapro.2018.09.007

    Article  Google Scholar 

  14. Kempf, A., & Hilgenberg, K. (2020). Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion. Materials Science and Engineering A, 776, 138976. https://doi.org/10.1016/j.msea.2020.138976

    Article  Google Scholar 

  15. Prashanth, K. G., Scudino, S., & Eckert, J. (2017). Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Materialia, 126, 25–35. https://doi.org/10.1016/j.actamat.2016.12.044

    Article  Google Scholar 

  16. Martin, J. H., Yahata, B. D., Hundley, J. M., Mayer, J. A., Schaedler, T. A., & Pollock, T. M. (2017). 3D printing of high-strength aluminium alloys. Nature, 549, 365–369. https://doi.org/10.1038/nature23894

    Article  Google Scholar 

  17. Fiocchi, J., Tuissi, A., & Biffi, C. A. (2021). Heat treatment of aluminium alloys produced by laser powder bed fusion: A review. Materials and Design, 204, 109651. https://doi.org/10.1016/j.matdes.2021.109651

    Article  Google Scholar 

  18. Prashanth, K. G., Scudino, S., Klauss, H. J., Surreddi, K. B., Löber, L., Wang, Z., et al. (2014). Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Materials Science and Engineering A, 590, 153–160. https://doi.org/10.1016/j.msea.2013.10.023

    Article  Google Scholar 

  19. Gu, X., Zhang, J., Fan, X., Dai, N., Xiao, Y., & Zhang, L. C. (2019). Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300 °C. Journal of Alloys and Compounds, 803, 314–324. https://doi.org/10.1016/j.jallcom.2019.06.274

    Article  Google Scholar 

  20. Cabrini, M., Lorenzi, S., Pastore, T., Pellegrini, S., Ambrosio, E. P., Calignano, F., et al. (2016). Effect of heat treatment on corrosion resistance of DMLS AlSi10Mg alloy. Electrochimica Acta, 206, 346–355. https://doi.org/10.1016/j.electacta.2016.04.157

    Article  Google Scholar 

  21. Demir, A. G., & Previtali, B. (2017). Multi-material selective laser melting of Fe/Al-12Si components. Manufacturing Letters, 11, 8–11. https://doi.org/10.1016/j.mfglet.2017.01.002

    Article  Google Scholar 

  22. Ghoncheh, M. H., Sanjari, M., Cyr, E., Kelly, J., Pirgazi, H., Shakerin, S., et al. (2020). On the solidification characteristics, deformation, and functionally graded interfaces in additively manufactured hybrid aluminum alloys. International Journal of Plasticity, 133, 102840. https://doi.org/10.1016/j.ijplas.2020.102840

    Article  Google Scholar 

  23. Fathi, P., Rafieazad, M., Mohseni-Sohi, E., Sanjari, M., Pirgazi, H., Shalchi Amirkhiz, B., et al. (2021). Corrosion performance of additively manufactured bimetallic aluminum alloys. Electrochimica Acta, 389, 138689. https://doi.org/10.1016/j.electacta.2021.138689

    Article  Google Scholar 

  24. Lee, W. S., & Tang, Z. C. (2014). Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures. Materials and Design, 58, 116–124. https://doi.org/10.1016/j.matdes.2014.01.053

    Article  Google Scholar 

  25. Thijs, L., Kempen, K., Kruth, J. P., & Van Humbeeck, J. (2013). Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia, 61, 1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    Article  Google Scholar 

  26. Gu, X. H., Zhang, J. X., Fan, X. L., & Zhang, L. C. (2020). Corrosion behavior of selective laser melted AlSi10Mg alloy in NaCl solution and its dependence on heat treatment. Acta Metallurgica Sinica (English Letters), 33, 327–337. https://doi.org/10.1007/s40195-019-00903-5

    Article  Google Scholar 

  27. Yuan, P., & Gu, D. (2015). Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments. Journal of Physics D: Applied Physics. https://doi.org/10.1088/0022-3727/48/3/035303

    Article  Google Scholar 

  28. Hadadzadeh, A., Amirkhiz, B. S., Li, J., & Mohammadi, M. (2018). Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: Effect of building direction. Additive Manufacturing, 23, 121–131. https://doi.org/10.1016/j.addma.2018.08.001

    Article  Google Scholar 

  29. Markov, I., & Stoyanov, S. (1987). Mechanisms of epitaxial growth. Contemporary physics, 28(3), 267–320. https://doi.org/10.1080/00107518708219073.

    Article  Google Scholar 

  30. Ghayoor, M., Lee, K., He, Y., Chang, C., Paul, B. K., & Pasebani, S. (2020). Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Additive Manufacturing, 32, 101011. https://doi.org/10.1016/j.addma.2019.101011

    Article  Google Scholar 

  31. Zhou, L., Mehta, A., Schulz, E., McWilliams, B., Cho, K., & Sohn, Y. (2018). Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Materials Characterization, 143, 5–17. https://doi.org/10.1016/j.matchar.2018.04.022

    Article  Google Scholar 

  32. Jiang, X., Xiong, W., Wang, L., Guo, M., & Ding, Z. (2020). Heat treatment effects on microstructure-residual stress for selective laser melting AlSi10Mg. Materials Science and Technology (United Kingdom), 36, 168–180. https://doi.org/10.1080/02670836.2019.1685770

    Article  Google Scholar 

  33. Tan, C., Chew, Y., Weng, F., Sui, S., Ng, F. L., Liu, T., et al. (2022). Laser aided additive manufacturing of spatially heterostructured steels. International Journal of Machine Tools and Manufacture, 172, 103817. https://doi.org/10.1016/j.ijmachtools.2021.103817

    Article  Google Scholar 

  34. Böhlke, T., Bondár, G., Estrin, Y., & Lebyodkin, M. A. (2009). Geometrically non-linear modeling of the Portevin–Le Chatelier effect. Computational Materials Science, 44, 1076–1088. https://doi.org/10.1016/j.commatsci.2008.07.036

    Article  Google Scholar 

  35. Shen, Y. Z., Oh, K. H., & Lee, D. N. (2004). The effect of texture on the Portevin–Le Chatelier effect in 2090 Al-Li alloy. Scripta Materialia, 51, 285–289. https://doi.org/10.1016/j.scriptamat.2004.04.030

    Article  Google Scholar 

  36. Nayan, N., Narayana Murty, S. V. S., Sarkar, R., Mukhopadhyay, A. K., Ahlawat, S., Sarkar, S. K., et al. (2019). The anisotropy of serrated flow behavior of Al-Cu-Li (AA2198) alloy. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 50, 5066–5078. https://doi.org/10.1007/s11661-019-05431-6

    Article  Google Scholar 

  37. Li, W., Li, S., Liu, J., Zhang, A., Zhou, Y., Wei, Q., et al. (2016). Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Materials Science and Engineering A, 663, 116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  Google Scholar 

  38. Wang, C. G., Zhu, J. X., Wang, G. W., Qin, Y., Sun, M. Y., Yang, J. L., et al. (2022). Effect of building orientation and heat treatment on the anisotropic tensile properties of AlSi10Mg fabricated by selective laser melting. Journal of Alloys and Compounds, 895, 162665. https://doi.org/10.1016/j.jallcom.2021.162665

    Article  Google Scholar 

  39. Rubben, T., Revilla, R. I., & De Graeve, I. (2019). Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg. Corrosion Science, 147, 406–415. https://doi.org/10.1016/j.corsci.2018.11.038

    Article  Google Scholar 

  40. Revilla, R. I., Liang, J., Godet, S., & De Graeve, I. (2017). Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. Journal of the Electrochemical Society, 164, C27–C35. https://doi.org/10.1149/2.0461702jes

    Article  Google Scholar 

  41. Soysal, T., Kou, S., Tat, D., & Pasang, T. (2016). Macrosegregation in dissimilar-metal fusion welding. Acta Materialia, 110, 149–160. https://doi.org/10.1016/j.actamat.2016.03.004

    Article  Google Scholar 

  42. Jamshidi, A. H. (2015). Microstructure and residual stress distributions in friction stir welding of dissimilar aluminium alloys. Materials and Design, 87, 405–413. https://doi.org/10.1016/j.matdes.2015.08.050

    Article  Google Scholar 

  43. Wang, M., Song, B., Wei, Q., Zhang, Y., & Shi, Y. (2019). Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Materials Science and Engineering A, 739, 463–472. https://doi.org/10.1016/j.msea.2018.10.047

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Ministry of Education, Singapore, under its Academic Research Fund (Grant no. MOE-T2EP50120-0010), and the Agency for Science, Technology and Research, Singapore (Grant no. A19E1a0097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Bai, Y. & Wang, H. Feasibility and Reliability of Laser Powder Bed Fused AlSi10Mg/Wrought AA6061 Hybrid Aluminium Alloy Component. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 959–977 (2023). https://doi.org/10.1007/s40684-022-00456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00456-6

Keywords

Navigation