Skip to main content
Log in

Corrosion Properties of Dissimilar AA6082/AA6060 Friction Stir Welded Butt Joints in Different NaCl Concentrations

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

A solid-state friction stir welding method which is increasingly used in the marine and shipbuilding industry, has been developed to produce welds with high mechanical properties. In seawater, the oxide layer of aluminium is attacked by Cl ions resulting in its disruption and formation of pitting corrosion. It is particularly important to determine the electrochemical properties of the produced welds and to evaluate the effect of welding parameters on these properties. The following paper presents a study on the corrosion properties of welds of dissimilar aluminium alloys, AA6082 and AA6060, produced for two different tool traverse speeds of 160 and 200 mm/min, with consideration of the size of crystallites and residual stresses in the samples, determined by Williamson-Hall analysis and micro-indentation tests. The results revealed that the size of the crystallites in the welds was larger compared to the base materials and the friction stir welding process generated residual compressive stresses. Furthermore, the welds exhibited higher corrosion resistance compared to the parent materials. Scanning electron microscope observations indicated that the preferred locations of corrosion propagation for welds are the edges on the joint line formed by the combination of rotational and linear motion of the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ancona, A., Daurelio, G., De Filippis, L. A. C., Ludovico, A. D., & Spera, A. M. (2002). CO2 laser welding of aluminium shipbuilding industry alloys: AA 5083, AA 5383, AA 5059, and AA 6082. XIV International Symposium on Gas Flow Chemical Lasers and High-Power Lasers. https://doi.org/10.1117/12.515825

    Article  Google Scholar 

  2. Dursun, T., & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials and Design, 56, 862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  Google Scholar 

  3. Hirsch, J. (2011). Aluminium in innovative light-weight car design. Materials Transactions, 52, 818–824. https://doi.org/10.2320/matertrans.L-MZ201132

    Article  Google Scholar 

  4. Ertuğ, B., & Kumruoğlu, C. (2015). 5083 type Al-Mg and 6082 type Al-Mg-Si alloys for ship building. American Journal of Engineering Research, 4, 146–50.

    Google Scholar 

  5. Laska, A., Szkodo, M., Koszelow, D., & Cavaliere, P. (2022). Effect of processing parameters on strength and corrosion resistance of friction stir-welded AA6082. Metals (Basel), 12, 1–16. https://doi.org/10.3390/met12020192

    Article  Google Scholar 

  6. Öteyaka, M. Ö., & Ayrtüre, H. (2015). A study on the corrosion behavior in sea water of welds aluminum alloy by shielded metal arc welding, friction stir welding and gas tungsten arc welding. International Journal of Electrochemical Science, 10, 8549–8557.

    Google Scholar 

  7. Zeng, Z., Lillard, R. S., & Cong, H. (2016). Effect of salt concentration on the corrosion behavior of carbon steel in CO2 environment. Corrosion, 72, 805–823. https://doi.org/10.5006/1910

    Article  Google Scholar 

  8. Han, J., Carey, J. W., & Zhang, J. (2011). Effect of sodium chloride on corrosion of mild steel in CO2-saturated brines. Journal of Appled Electrochemistry, 41, 741–749. https://doi.org/10.1007/s10800-011-0290-3

    Article  Google Scholar 

  9. Reunamo, A. (2015). Bacterial community structure and petroleum hydrocarbon degradation in the Baltic Sea. University of Turku

  10. Rendón, M. V., Calderón, J. A., & Fernández, P. (2011). Evaluation of the corrosion behavior of the al-356 alloy in NaCI solutions. Quimica Nova, 34, 1163–1166. https://doi.org/10.1590/S0100-40422011000700011

    Article  Google Scholar 

  11. Fayomi, O. S. I., & Akande, I. G. (2019). Corrosion mitigation of aluminium in 3.65% NaCl medium using hexamine. Journal of Bio- and Tribo-Corrosion, 5, 1–7. https://doi.org/10.1007/s40735-018-0214-4

    Article  Google Scholar 

  12. Dudzik, K., & Jurczak, W. (2015). Influence of friction stir welding on corrosion properties of Aw-7020M alloy in sea water. Advances in Materials Science, 15, 7–13. https://doi.org/10.1515/adms-2015-0002

    Article  Google Scholar 

  13. Meier, H. E. M., & Kauker, F. (2003). Sensitivity of the Baltic Sea salinity to the freshwater supply. Climate Research, 24, 231–242. https://doi.org/10.3354/cr024231

    Article  Google Scholar 

  14. Sinyavskii, V. S., & Kalinin, V. D. (2005). Marine corrosion and protection of aluminum alloys according to their composition and structure. Protection of Metals, 41, 317–328. https://doi.org/10.1007/s11124-005-0046-8

    Article  Google Scholar 

  15. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ. G. B. Patent Application No. 9125978.8, 1991

  16. Sato, Y. S., Kokawa, H., Ikeda, K., Enomoto, M., Jogan, S., & Hashimoto, T. (2001). Microtexture in the friction-stir weld of an aluminum alloy. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 32, 941–948. https://doi.org/10.1007/s11661-001-0351-z

    Article  Google Scholar 

  17. Kossakowski, P., Wciślik, W., & Bakalarz, M. (2018). Macrostructural analysis of friction stir welding (FSW) joints. Journal of Chemical Information and Modeling, 01, 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  18. Kah, P., Rajan, R., Martikainen, J., & Suoranta, R. (2015). Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. International Journal of Mechanical and Materials Engineering. https://doi.org/10.1186/s40712-015-0053-8

    Article  Google Scholar 

  19. Safeen, M. W., & Spena, P. R. (2019). Main issues in quality of friction stir welding joints of aluminum alloy and steel sheets. Metals (Basel). https://doi.org/10.3390/met9050610

    Article  Google Scholar 

  20. Zhang, J., Shen, Y., Yao, X., Xu, H., & Li, B. (2014). Investigation on dissimilar underwater friction stir lap welding of 6061–T6 aluminum alloy to pure copper. Materials and Design, 64, 74–80. https://doi.org/10.1016/j.matdes.2014.07.036

    Article  Google Scholar 

  21. Rajendran, C., Srinivasan, K., Balasubramanian, V., Balaji, H., & Selvaraj, P. (2019). Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Transactions of Nonferrous Metals Society of China, 29, 1824–35. https://doi.org/10.1016/S1003-6326(19)65090-9

    Article  Google Scholar 

  22. Mishra, R., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering Reports, 50, 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  23. Hamid, H. A. D., & Roslee, A. A. (2015). Study the role of friction stir welding tilt angle on microstructure and hardness. Applied Mechanics and Materials, 799–800, 434–438. https://doi.org/10.4028/www.scientific.net/amm.799-800.434

    Article  Google Scholar 

  24. Colligan, K. J. (2009). The friction stir welding process: An overview. Woodhead Publishing Limited. https://doi.org/10.1533/9781845697716.1.15

    Article  Google Scholar 

  25. Machniewicz, T., Nosal, P., Korbel, A., & Hebda, M. (2020). Effect of FSW traverse speed on mechanical properties of copper plate joints. Materials (Basel), 13, 1–14. https://doi.org/10.3390/ma13081937

    Article  Google Scholar 

  26. Palanivel, R., Koshy Mathews, P., Murugan, N., & Dinaharan, I. (2012). Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Materials and Design, 40, 7–16. https://doi.org/10.1016/j.matdes.2012.03.027

    Article  Google Scholar 

  27. Tasi P, Hajro I, Hodži D, Dobraš D. Energy Efficient Welding Technology : Fsw. 11th Int. Conf. Accompl. Electr. Mech. Engieering Inf. Technol., 2013, p. 429–42.

  28. Sivaraj, P., Kanagarajan, D., & Balasubramanian, V. (2014). Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy. Def Technol, 10, 1–8. https://doi.org/10.1016/j.dt.2014.01.004

    Article  Google Scholar 

  29. Laska, A., & Szkodo, M. (2020). Manufacturing parameters, materials, and welds properties of butt friction stir welded joints-overview. Materials (Basel), 13, 1–46. https://doi.org/10.3390/ma13214940

    Article  Google Scholar 

  30. Long, Q. H., Zhang, H., Tong, S. D., & Zhuang, Q. (2015). Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy. International Journal of Minerals, Metallurgy, and Materials, 22, 627–638. https://doi.org/10.1007/s12613-015-1116-9

    Article  Google Scholar 

  31. Gharavi, F., Matori, K. A., Yunus, R., Othman, N. K., & Fadaeifard, F. (2016). Corrosion evaluation of friction stir welded lap joints of AA6061-T6 aluminum alloy. Transactions of Nonferrous Metals Society of China, 26, 684–96. https://doi.org/10.1016/S1003-6326(16)64159-6

    Article  Google Scholar 

  32. Ales, S. K., & Wang, L. (2017). Effects of friction stir welding on corrosion behaviors of AA2024-T4 aluminum alloy. MATEC Web of Conferences, 109, 5. https://doi.org/10.1051/matecconf/201710902003

    Article  Google Scholar 

  33. Frodal, B. H., Dæhli, L. E. B., Børvik, T., & Hopperstad, O. S. (2019). Modelling and simulation of ductile failure in textured aluminium alloys subjected to compression-tension loading. International Journal of Plasticity, 118, 36–69. https://doi.org/10.1016/j.ijplas.2019.01.008

    Article  Google Scholar 

  34. Shatkay, M. (1991). Dissolved oxygen in highly saline sodium chloride solutions and in the Dead Sea—measurements of its concentration and isotopic composition. Marine Chemistry, 32, 89–99. https://doi.org/10.1016/0304-4203(91)90027-T

    Article  Google Scholar 

  35. Hakem, M., Khatir, M., Otmani, R. R., Fahssi, T., Debbache, N., & Allou, D. (2007). Heat treatment and welding effects on mechanical properties and microstructure evolution of 2024 and 7075 aluminium alloys. Weld World, 51, 163–170.

    Google Scholar 

  36. Okamura, H., Aota, K., Sakamoto, M., Ezumi, M., & Ikeuchi, K. (2002). Behaviourof oxides during friction stir welding of aluminium alloy and their effect on its mechanical properties. Welding International, 16, 266–275. https://doi.org/10.1080/09507110209549530

    Article  Google Scholar 

  37. Zeng, X. H., Xue, P., Wang, D., Ni, D. R., Xiao, B. L., Wang, K. S., et al. (2018). Material flow and void defect formation in friction stir welding of aluminium alloys. Science and Technology of Welding and Joining, 23, 677–686. https://doi.org/10.1080/13621718.2018.1471844

    Article  Google Scholar 

  38. Khorsand, S., & Huang, Y. (2017). Integrated casting-extrusion (ICE) of an AA6082 aluminium alloy. Journal of the Minerals Metals & Materials Society. https://doi.org/10.1007/978-3-319-51541-0_32

    Article  Google Scholar 

  39. Leszczyńska-Madej, B., Richert, M., Wąsik, A., & Szafron, A. (2018). Analysis of the microstructure and selected properties of the aluminium alloys used in automotive air-conditioning systems. Metals (Basel). https://doi.org/10.3390/met8010010

    Article  Google Scholar 

  40. Debih, A., & Ouakdi, E. H. (2018). Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al-Mg-Si-Mn. International Journal of Materials Research, 109, 34–41. https://doi.org/10.3139/146.111580

    Article  Google Scholar 

  41. Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  42. Khoshkhoo, M. S., Scudino, S., Thomas, J., Surreddi, K. B., & Eckert, J. (2011). Grain and crystallite size evaluation of cryomilled pure copper. Journal of Alloys and Compounds, 509, S343–S347. https://doi.org/10.1016/j.jallcom.2011.02.066

    Article  Google Scholar 

  43. Durst, K., Backes, B., Franke, O., & Göken, M. (2006). Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Materialia, 54, 2547–2555. https://doi.org/10.1016/j.actamat.2006.01.036

    Article  Google Scholar 

  44. Johnson, K. L. (1985). Contact mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139171731

    Book  MATH  Google Scholar 

  45. Cho, J., Molinari, J. F., & Anciaux, G. (2017). Mobility law of dislocations with several character angles and temperatures in FCC aluminum. International Journal of Plasticity, 90, 66–75. https://doi.org/10.1016/j.ijplas.2016.12.004

    Article  Google Scholar 

  46. Zhuang Z., Liu Z., & Cui Y. (2019). Strain gradient plasticity theory at the microscale. In Z. Zhuang, Z. Liu, & Cui Y. (Eds.) Dislocation mechanism-based crystal plasticity (pp. 57–90). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814591-3.00003-0.

  47. Yamada, H., Ogasawara, N., Shimizu, Y., Horikawa, H., & Kobayashi, H. (2012). Effect of high strain rate on micro-indentation test in pure aluminum. EPJ Web of Conferences, 26, 2–6. https://doi.org/10.1051/epjconf/20122601028

    Article  Google Scholar 

  48. Voyiadjis, G. Z., & Abed, F. H. (2005). Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures. Archives of Mechanics, 57, 299–343. https://doi.org/10.24423/aom.190

    Article  MATH  Google Scholar 

  49. Cassayre, L., Chamelot, P., Arurault, L., & Taxil, P. (2005). Anodic dissolution of metals in oxide-free cryolite melts. Journal of Appled Electrochemistry, 35, 999–1004. https://doi.org/10.1007/s10800-005-6727-9

    Article  Google Scholar 

  50. Yu, M., Zhao, X., Xiong, L., Xue, B., Kong, X., Liu, J., et al. (2018). Improvement of corrosion protection of coating system via inhibitor response order. Coatings, 8, 1–15. https://doi.org/10.3390/coatings8100365

    Article  Google Scholar 

  51. Kwolek, P. (2020). Corrosion behaviour of 7075 aluminium alloy in acidic solution. RSC Advances, 10, 26078–26089. https://doi.org/10.1039/d0ra04215c

    Article  Google Scholar 

  52. Popa, M. V., Vasilescu, E., Drob, P., Vasilescu, C., Drob, S. I., Mareci, D., et al. (2010). Corrosion resistance improvement of titanium base alloys. Quimica Nova, 33, 1892–1896. https://doi.org/10.1590/S0100-40422010000900014

    Article  Google Scholar 

  53. de Assis, S. L., & Costa, I. (2007). The effect of polarisation on the electrochemical behavior of Ti-13Nb-13Zr alloy. Materials Research, 10, 293–296. https://doi.org/10.1590/s1516-14392007000300014

    Article  Google Scholar 

  54. PN-H-04608:1978 Korozja metali -- Skala odporności metali na korozję. 1978.

  55. Zucchi, F., Trabanelli, G., & Grassi, V. (2001). Pitting and stress corrosion cracking resistance of friction stir welded AA 5083. Werkstoffe Und Korrosion, 52, 853–859. https://doi.org/10.1002/1521-4176(200111)52:11%3c853::aid-maco853%3e3.0.co;2-1

    Article  Google Scholar 

  56. Wang, H. F., Wang, J. L., Song, W. W., Zuo, D. W., & Shao, D. L. (2016). Analysis on the corrosion performance of friction stir welding joint of 7022 aluminum alloy. International Journal of Electrochemical Science, 11, 6933–6942. https://doi.org/10.20964/2016.08.09

    Article  Google Scholar 

  57. Łosiewicz, B., Maszybrocka, J., Kubisztal, J., Skrabalak, G., & Stwora, A. (2021). Corrosion resistance of the cpti g2 cellular lattice with tpms architecture for gas diffusion electrodes. Materials (Basel), 14, 1–18. https://doi.org/10.3390/ma14010081

    Article  Google Scholar 

  58. Berradja, A. (2019). Electrochemical techniques for corrosion and tribocorrosion monitoring: methods for the assessment of corrosion rates. Corrosion Inhibitors. https://doi.org/10.5772/intechopen.86743

    Article  Google Scholar 

  59. Woo, W., Ungár, T., Feng, Z., Kenik, E., & Clausen, B. (2010). X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction-stir-welded aluminum alloy. Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science, 41, 1210–1216. https://doi.org/10.1007/s11661-009-9963-5

    Article  Google Scholar 

  60. Woo, W., Feng, Z., Hubbard, C. R., David, S. A., Wang, X. L., Clausen, B., et al. (2009). In-situ time-resolved neutron diffraction measurements of microstructure variations during friction stir welding in a 6061–T6 aluminum alloy. ASM Proceedings of the International Conference. https://doi.org/10.1361/cp2008twr407

    Article  Google Scholar 

  61. Berezina, A. L., Budarina, N. N., Kotko, A. V., Molebny, O. A., Chayka, A. A., & Ischenko, A. Y. (2011). Structural changes in friction-stir welded Al-Li-Cu-Sc-Zr (1460) alloy. Nanomaterials: Applications and Properties, 2, 247–253.

  62. Terasaki, T., & Akiyama, T. (2003). Mechanical behavior of joints in FSW: residual stress, inherent strain and heat input generated by friction stir welding. Weld World, 47, 24–31.

    Article  Google Scholar 

  63. Lim, Y.-S., Kim, S.-H., & Lee, K.-J. (2018). Effect of residual stress on the mechanical properties of fsw joints with SUS409L. Advances in Materials Science and Engineering, 2018, 1–8.

    Article  Google Scholar 

  64. Bai, L. Y., Gao, L., & Jiang, K. B. (2018). Influence of residual stress on the corrosion behaviors of welded structures in the nature seawater. IOP Conference Series. https://doi.org/10.1088/1757-899X/392/4/042009

    Article  Google Scholar 

  65. Trdan, U., & Grum, J. (2015). Investigation of corrosion behaviour of aluminium alloy subjected to laser shock peening without a protective coating. Advances in Materials Science and Engineering. https://doi.org/10.1155/2015/705306

    Article  Google Scholar 

  66. Saccenti, E., Hendriks, M. H. W. B., & Smilde, A. K. (2020). Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models. Science and Reports, 10, 1–20. https://doi.org/10.1038/s41598-019-57247-4

    Article  Google Scholar 

  67. Chen, D. Y., Shao, M. W., Cheng, L., Wang, X. H., & Ma, D. D. D. (2009). Strong and stable blue photoluminescence: The peapodlike SiOx @ Al2 O3 heterostructure. Applied Physics Letters, 94, 2007–2010. https://doi.org/10.1063/1.3070319

    Article  Google Scholar 

  68. Morinaga, M. (2019). A quantum approach to alloy design. In An exploration of material design and development based upon alloy design theory and atomization energy method, Materials Today. https://doi.org/10.1016/b978-0-12-814706-1.00013-3. https://www.sciencedirect.com/book/9780128147061/a-quantum-approach-to-alloy-design

  69. Munro, R. G. (1997). Evaluated material properties for a sintered α-alumina. Journal of the American Ceramic Society, 80, 1919–1928. https://doi.org/10.1111/j.1151-2916.1997.tb03074.x

    Article  Google Scholar 

  70. Kimura, T., Matsuda, Y., Oda, M., & Yamaguchi, T. (1987). Effects of agglomerates on the sintering of alpha-Al2O3. Ceramics International, 13, 27–34. https://doi.org/10.1016/0272-8842(87)90035-6

    Article  Google Scholar 

  71. De Faoite, D., Browne, D. J., Chang-Díaz, F. R., & Stanton, K. T. (2012). A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. Journal of Materials Science, 47, 4211–4235. https://doi.org/10.1007/s10853-011-6140-1

    Article  Google Scholar 

  72. Szkodo, M., Stanisławska, A., Komarov, A., & Bolewski, Ł. (2021). Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys. Wear. https://doi.org/10.1016/j.wear.2021.203709

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Maria Gazda from Faculty of Applied Physics and Mathematics of Gdańsk University of Technology for performing XRD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Laska.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laska, A., Szkodo, M., Pawłowski, Ł. et al. Corrosion Properties of Dissimilar AA6082/AA6060 Friction Stir Welded Butt Joints in Different NaCl Concentrations. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 457–477 (2023). https://doi.org/10.1007/s40684-022-00441-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00441-z

Keywords

Navigation