Skip to main content
Log in

Machinability and Surface Quality During Milling CFRP Laminates Under Dry and Supercritical CO2-Based Cryogenic Conditions

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced polymer (CFRP) composites have been widely used in the aerospace industry due to their excellent mechanical properties. CFRP machining is still a challenging task for manufacturers due to its high temperature-sensitivity and poor machinability. Cryogenic machining is believed to be an effective and eco-friendly way to solve the aforementioned problem. This work primarily compared the machinability and machined surface quality of CFRP laminates under dry and supercritical CO2 (scCO2)-based cryogenic conditions. A series of tests were carried out under different cutting conditions, in which the feed rate, cutting speed, and cooling method were considered. To reveal the material removal mechanisms under different cooling conditions, the tribology and micro-hardness tests were innovatively carried out under different temperatures. The obtained results show that the scCO2-based cooling method is suitable for machining CFRP materials. Under cryogenic cutting conditions, the machined surface quality is considerably improved despite that the cutting force presents higher magnitudes compared to those under dry cutting. The improvement of surface quality under cryogenic cooling method is attributed to avoidance the degradation of material properties caused by high temperatures during dry cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Qiu, X., Li, P., Li, C., Niu, Q., Chen, A., Ouyang, P., & Ko, T. J. (2019). New compound drill bit for damage reduction in drilling CFRP. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 75–87. https://doi.org/10.1007/s40684-019-00026-3

    Article  Google Scholar 

  2. An, Q., Cai, C., Cai, X., & Chen, M. (2019). Experimental investigation on the cutting mechanism and surface generation in orthogonal cutting of UD-CFRP laminates. Composite Structures, 230, 111441.

    Article  Google Scholar 

  3. Xu, J., Ji, M., Davim, J. P., Chen, M., El Mansori, M., & Krishnaraj, V. (2020). Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Composite Structures, 234, 111727.

    Article  Google Scholar 

  4. An, Q., Ming, W., Cai, X., & Chen, M. (2015). Study on the cutting mechanics characteristics of high-strength UD-CFRP laminates based on orthogonal cutting method. Composite Structures, 131, 374–383.

    Article  Google Scholar 

  5. Ahmad Sobri, S., Heinemann, R., Whitehead, D., & Shuaib, N. A. (2018). Drilling strategy for thick carbon fiber reinforced polymer composites (CFRP): A preliminary assessment. Journal of Engineering and Technological Sciences. https://doi.org/10.5614/j.eng.technol.sci.2018.50.1.2

    Article  Google Scholar 

  6. An, Q., Zou, F., Cai, X., Gao, M., & Chen, M. (2020). Experimental investigation on the machinability of CFRP/Invar36 hybrid co-cured material in turning operations. The International Journal of Advanced Manufacturing Technology, 107(9), 3715–3726. https://doi.org/10.1007/s00170-020-05333-7.

    Article  Google Scholar 

  7. Zou, F., Dang, J., Cai, X., An, Q., Ming, W., & Chen, M. (2020). Hole quality and tool wear when dry drilling of a new developed metal/composite co-cured material. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234(6–7), 980–992.

    Article  Google Scholar 

  8. Dang, J., Zou, F., Cai, X., An, Q., Ming, W., & Chen, M. (2020). Experimental investigation on mechanical drilling of a newly developed CFRP/Al co-cured material. The International Journal of Advanced Manufacturing Technology, 106(3–4), 993–1004.

    Article  Google Scholar 

  9. Ahmad Sobri, S., Heinemann, R., & Whitehead, D. (2021). Sequential laser-mechanical drilling of thick carbon fibre reinforced polymer composites (CFRP) for industrial applications. Polymers, 13(13), 2136.

    Article  Google Scholar 

  10. Chen, W.-C. (1997). Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. International Journal of Machine Tools and Manufacture, 37(8), 1097–1108.

    Article  Google Scholar 

  11. Ramirez, C., Poulachon, G., Rossi, F., & M’Saoubi, R. (2014). Tool wear monitoring and hole surface quality during CFRP drilling. Procedia CIRP, 13, 163–168.

    Article  Google Scholar 

  12. Nguyen, P. L., Vu, X. H., & Ferrier, E. (2019). Thermo-mechanical performance of carbon fiber reinforced polymer (CFRP), with and without fire protection material, under combined elevated temperature and mechanical loading conditions. Composites Part B: Engineering, 169, 164–173.

    Article  Google Scholar 

  13. Chatterjee, A. (2009). Thermal degradation analysis of thermoset resins. Journal of applied polymer science, 114(3), 1417–1425.

    Article  Google Scholar 

  14. Hancox, N. (1998). Thermal effects on polymer matrix composites: Part 2. Thermal degradation. Materials and design, 19(3), 93–97.

    Article  Google Scholar 

  15. Ellis, B. (1993). Chemistry and technology of epoxy resins. Springer.

    Book  Google Scholar 

  16. Argon, A. S. (2013). The physics of deformation and fracture of polymers. Cambridge University Press.

    Book  Google Scholar 

  17. Barker, A. J., & Vangerko, H. (1983). Temperature dependence of elastic constants of CFRP. Composites, 14(1), 52–56.

    Article  Google Scholar 

  18. Miyano, Y., Nakada, M., & Sekine, N. (2005). Accelerated testing for long-term durability of FRP laminates for marine use. Journal of Composite Materials, 39(1), 5–20.

    Article  Google Scholar 

  19. Hirai, Y., Hamada, H., & Kim, J.-K. (1998). Impact response of woven glass-fabric composites—I.: Effect of fibre surface treatment. Composites Science and Technology, 58(1), 91–104.

    Article  Google Scholar 

  20. Sala, G. (2000). Composite degradation due to fluid absorption. Composites Part B: Engineering, 31(5), 357–373.

    Article  Google Scholar 

  21. Turner, J., Scaife, R. J., & El-Dessouky, H. (2015). Effect of machining coolant on integrity of CFRP composites. Advanced Manufacturing: Polymer and Composites Science, 1(1), 54–60.

    Google Scholar 

  22. Zhang, J., Wu, W., Li, C., Yang, M., Zhang, Y., Jia, D., Hou, Y., Li, R., Cao, H., & Ali, H. M. (2020). Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti–6Al–4V. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00268-6

    Article  Google Scholar 

  23. An, Q., & Dang, J. (2020). Cooling effects of cold mist jet with transient heat transfer on high-speed cutting of titanium alloy. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 271–282. https://doi.org/10.1007/s40684-019-00076-7

    Article  Google Scholar 

  24. Koklu, U., & Morkavuk, S. (2019). Cryogenic drilling of carbon fiber-reinforced composite (CFRP). Surface Review and Letters, 26(09), 1950060.

    Article  Google Scholar 

  25. Shah, P., & Khanna, N. (2020). Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribology International, 148, 106314. https://doi.org/10.1016/j.triboint.2020.106314.

    Article  Google Scholar 

  26. Morkavuk, S., Köklü, U., Bağcı, M., & Gemi, L. (2018). Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1–11.

    Article  Google Scholar 

  27. Khanna, N., Pusavec, F., Agrawal, C., & Krolczyk, G. M. (2020). Measurement and evaluation of hole attributes for drilling CFRP composites using an indigenously developed cryogenic machining facility. Measurement, 154, 107504.

    Article  Google Scholar 

  28. Kumar, D., & Gururaja, S. (2020). Machining damage and surface integrity evaluation during milling of UD-CFRP laminates: Dry vs cryogenic. Composite Structures, 247, 112504. https://doi.org/10.1016/j.compstruct.2020.112504.

    Article  Google Scholar 

  29. Priarone, P. C., Klocke, F., Faga, M. G., Lung, D., & Settineri, L. (2016). Tool life and surface integrity when turning titanium aluminides with PCD tools under conventional wet cutting and cryogenic cooling. The International Journal of Advanced Manufacturing Technology, 85(1–4), 807–816.

    Article  Google Scholar 

  30. Jerold BD, Kumar MP (2013) The influence of cryogenic coolants in machining of Ti–6Al–4V. Journal of Manufacturing Science and Engineering - Transactions of the ASME, 135(3), 031005. https://doi.org/10.1115/1.4024058.

    Article  Google Scholar 

  31. Clarens, A. F., Hayes, K. F., & Skerlos, S. J. (2006). Feasibility of metalworking fluids delivered in supercritical carbon dioxide. Journal of Manufacturing Processes, 8(1), 47–53.

    Article  Google Scholar 

  32. Rahim, E., Rahim, A., Ibrahim, M., & Mohid, Z. (2016). Experimental investigation of supercritical carbon dioxide (SCCO2) performance as a sustainable cooling technique. Procedia Cirp, 40, 637–641.

    Article  Google Scholar 

  33. Supekar S, Gozen B, Bediz B, Ozdoganlar O, Skerlos S (2013) Feasibility of supercritical carbon dioxide based metalworking fluids in micromilling. Journal of Manufacturing Science and Engineering - Transactions of the ASME, 135(2), 024501. https://doi.org/10.1115/1.4023375

    Article  Google Scholar 

  34. Azmi, A., Lin, R., & Bhattacharyya, D. (2013). Machinability study of glass fibre-reinforced polymer composites during end milling. The International Journal of Advanced Manufacturing Technology, 64(1–4), 247–261.

    Article  Google Scholar 

  35. Jang, D.-y, Jung, J., & Seok, J. (2016). Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 5–12. https://doi.org/10.1007/s40684-016-0001-y

    Article  Google Scholar 

  36. Davim, J. P., & Reis, P. (2005). Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. Journal of materials processing technology, 160(2), 160–167.

    Article  Google Scholar 

  37. Ahmad Sobri, S., Whitehead, D., Mohamed, M., Mohamed, J. J., Mohamad Amini, M. H., Hermawan, A., Mat Rasat, M. S., Mohammad Sofi, A. Z., Wan Ismail, W. O. A. S., & Norizan, M. N. (2020). Augmentation of the delamination factor in drilling of carbon fibre-reinforced polymer composites (CFRP). Polymers, 12(11), 2461.

    Article  Google Scholar 

  38. Daniel, I. M., Ishai, O., Daniel, I. M., & Daniel, I. (1994). Engineering mechanics of composite materials (Vol. 3). Oxford University Press.

    Google Scholar 

  39. Wang, X., Wang, C., Shen, X., & Sun, F. (2019). Tribological behaviors of the diamond films sliding against the T800/X850 CFRP laminates. Wear, 418–419, 191–200. https://doi.org/10.1016/j.wear.2018.12.007

    Article  Google Scholar 

  40. Kumar, D., & Gururaja, S. (2020). Machining damage and surface integrity evaluation during milling of UD-CFRP laminates: Dry vs. cryogenic. Composite Structures. https://doi.org/10.1016/j.compstruct.2020.112504

    Article  Google Scholar 

  41. Chen, J., An, Q., Ming, W., & Chen, M. (2019). Hole exit quality and machined surface integrity of 2D Cf/SiC composites drilled by PCD tools. Journal of the European Ceramic Society, 39(14), 4000–4010.

    Article  Google Scholar 

  42. Chang, T., Zhan, L., Tan, W., & Wu, X. (2018). Cohesive zone modeling of the autoclave pressure effect on the delamination behavior of composite laminates. Journal of Reinforced Plastics and Composites, 37(24), 1468–1480.

    Article  Google Scholar 

  43. Guo-dong, F., Jun, L., & Bao-lai, W. (2009). Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Composite Structures, 89(1), 126–133.

    Article  Google Scholar 

  44. Zou, F., Chen, J., An, Q., Cai, X., & Chen, M. (2020). Influences of clearance angle and point angle on drilling performance of 2D Cf/SiC composites using polycrystalline diamond tools. Ceramics International, 46(4), 4371–4380.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by National Key R&D Program of China (2020YFB2010600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong An.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, F., Zhong, B., Zhang, H. et al. Machinability and Surface Quality During Milling CFRP Laminates Under Dry and Supercritical CO2-Based Cryogenic Conditions. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 765–781 (2022). https://doi.org/10.1007/s40684-021-00386-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00386-9

Keywords

Navigation