Skip to main content
Log in

Modified Wettability of Micro-structured Steel Surfaces Fabricated by Elliptical Vibration Diamond Cutting

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Hardened steel is an important material related to the development of modern industry branches. In order to satisfy the adhesion strength as well as the corrosion and wear resistance under extreme conditions, the modification of the wettability of hardened steel has become an important scientific topic. As micro/nano-structured surfaces play an essential role to induce advanced functional surfaces with wettability control, this contribution aims at presenting the feasibility of micro/nano sculpturing of hardened steels by elliptical vibration diamond cutting. The influence of the fabricated micro/nano structures on the resulting wettability is discussed and related to the contact line density as well as asperity heights. In this regard, it has been verified that a pitch value of 12 μm and structural height of 500 nm are the preferred structural parameters to increase the hydrophobicity of the textured steel specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Callies, M., Chen, Y., Marty, F., Pepin, A., & Quere, D. (2005). Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronics Engineering, 78–79, 100–105

    Article  Google Scholar 

  2. Quere, D. (2008). Wetting and roughness. Annual Review of Materials Research, 38, 71–99

    Article  Google Scholar 

  3. Moon, I. Y., Kim, B. H., Lee, H. W., Oh, Y. S., Kim, J. H., & Kang, S. H. (2020). Superhydrophobic polymer surface with hierarchical patterns fabricated in hot imprinting process. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 493–503

    Article  Google Scholar 

  4. Costa, H. L., & Hutchings, I. M. (2007). Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribology International, 40, 1227–1238

    Article  Google Scholar 

  5. König, F., Rosenkranz, A., Grützmacher, P. G., Mücklich, F., & Jacobs, G. (2019). Effect of single- and multi-scale surface patterns on the frictional performance of journal bearings—a numerical study. Tribology International, 143, 1–12

    Google Scholar 

  6. Kim, M., Lee, S. M., Lee, S. J., Kim, Y. W., Li, L., & Lee, D. W. (2017). Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 27–35

    Article  Google Scholar 

  7. Wu, R. M., Li, H. F., Zheng, Z. R., & Liu, X. (2011). Freeform lens arrays for off-axis illumination in an optical lithography system. Applied Optics, 50, 725–732

    Article  Google Scholar 

  8. Evans, C. J., & Bryan, J. B. (1999). “Structured”, “Textured” or “Engineered” surfaces. CIRP Annals-Manufacturing Technology, 48(2), 541–556

    Article  Google Scholar 

  9. Li, L., & Yi, A. Y. (2012). Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera. Applied Optics, 51(2), 1843–1852

    Article  Google Scholar 

  10. Suzuki, H., Okada, M., Yamagata, Y., Morita, S., & Higuchi, T. (2012). Precision grinding of structured ceramic molds by diamond wheel trued with alloy metal. Annals of the CIRP, 61(1), 283–286

    Article  Google Scholar 

  11. Lewis, P. R., & McCutchen, C. W. (1959). Experimental evidence for weeping lubrication in mammalian joints. Nature, 184, 1285

    Article  Google Scholar 

  12. Bico, J., Marzolin, C., & Quéré, D. (1999). Pearl drops. Europhysics Letters, 47, 220–226

    Article  Google Scholar 

  13. Guo, J., Zhang, J., Wang, H., Liu, K., & Kumar, A. S. (2018). Surface quality characterisation of diamond cut V-groove structures made of rapidly solidified aluminium RSA-905. Precision Engineering, 53, 120–133

    Article  Google Scholar 

  14. Shirtcliffe, N. J., Mchale, G., Atherton, S., & Newton, M. I. (2010). An introduction to superhydrophobicity. Advances in Colloid and Interface Science, 161(1–2), 124–138

    Article  Google Scholar 

  15. Bhushan, B., Jung, Y. C., & Koch, K. (2009). Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions of the Royal Society A, 367, 1631–1672

    Article  Google Scholar 

  16. Xia, D., Johnson, L. M., & López, G. P. (2012). Anisotropic wetting surfaces with one dimesional and directional structures: Fabrication approaches, wetting properties and potential applications. Advanced Materials, 24(10), 1287–1302

    Article  Google Scholar 

  17. Wang, X. C., Zheng, H. Y., Wan, Y. C., Feng, W. H., & Lam, Y. C. (2018). Picosecond laser surface texturing of a stavax steel substrate for wettability control. Engineering, 4, 816–821

    Article  Google Scholar 

  18. Li, X. H., Tan, Z. J., & Fang, N. X. (2020). Grayscale stencil lithography for patterning multispectral color filters. Optica, 7(9), 1154–1161

    Article  Google Scholar 

  19. Lee, S. H., Lee, J. H., Park, C. W., Lee, C. Y., Kim, K., Tahk, D., & Kwak, M. K. (2014). Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 119–124

    Article  Google Scholar 

  20. Mao, B., Siddaiah, A., Liao, Y. L., & Menezes, P. L. (2020). Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. Journal of Manufacturing Processes, 53, 153–173

    Article  Google Scholar 

  21. Reif, J. (2018). Surface functionalization by laser-induced structuring. In: Advances in the application of lasers in materials science (pp. 63–88)

  22. Rezaei, S. D., Ho, J., Wang, T., Ramakrishna, S., & Yang, J. K. W. (2020). Direct color printing with an electron beam. Nano Letters, 20, 4422–4429

    Article  Google Scholar 

  23. Kim, J., Lee, W. J., & Park, H. W. (2016). The state of the art in the electron beam manufacturing processes. International Journal of Precision Engineering and Manufacturing, 17(11), 1575–1585

    Article  Google Scholar 

  24. Chen, S. T., & Jhou, W. Y. (2021). Dual-crankshaft out-of-phase balanced drive mechanism applied to high-frequency scraping of high-density microcavities patterns. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00300-9

    Article  Google Scholar 

  25. Zhang, J. G., Cui, T., Ge, C., Sui, Y. X., & Yang, H. J. (2016). Review of micro/nano machining by utilizing elliptical vibration cutting. International Journal of Machine Tools and Manufacture, 106, 109–126

    Article  Google Scholar 

  26. Brinksmeier, E., Glabe, R., & Schonemann, L. (2012). Review on diamond-machining processes for the generation of functional surface structures. CIRP Journal of Manufacturing Science and Technology, 5, 1–7

    Article  Google Scholar 

  27. Guo, J., Zhang, J. G., Pan, Y. N., Kang, R. K., Namba, Y., Shore, P., Yue, X. B., Wang, B. R., & Guo, D. M. (2020). A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals. International Journal of Extreme Manufacturing, 2, 012001

    Article  Google Scholar 

  28. Paul, E., Evans, C. J., Mangamelli, A., McGlauflin, M. L., & Polvani, R. S. (1996). Chemical aspects of tool wear in single point diamond turning. Precision Engineering, 18(1), 4–19

    Article  Google Scholar 

  29. Shamoto, E., & Moriwaki, T. (1994). Study on elliptical vibration cutting. CIRP Annals-Manufacturing Technology, 43(1), 35–38

    Article  Google Scholar 

  30. Shamoto, E., & Moriwaki, T. (1999). Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Annals-Manufacturing Technology, 48(1), 441–444

    Article  Google Scholar 

  31. Jung, H. J., Hayasaka, T., & Shamoto, E. (2018). Study on process monitoring of elliptical vibration cutting by utilizing internal data in ultrasonic elliptical vibration device. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(5), 571–581

    Article  Google Scholar 

  32. Suzuki, N., Yokoi, H., & Shamoto, E. (2011). Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting. Precision Engineering, 35, 44–50

    Article  Google Scholar 

  33. Extrand, C. W. (2004). Criteria for ultralyophobic surfaces. Langmuir, 20(12), 5013–5018

    Article  Google Scholar 

  34. Yan, Y., Gao, N., & Barthlott, W. (2011). Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science, 169(2), 80–105

    Article  Google Scholar 

  35. Grützmacher, P. G., Rosenkranz, A., & Gachot, C. (2016). How to guide lubricants—tailored laser surface patterns on stainless steel. Applied Surface Science, 370, 59–66

    Article  Google Scholar 

  36. Grützmacher, P. G., Rosenkranz, A., Szurdak, A., Gachot, C., Hirt, G., & Mücklich, F. (2018). Lubricant migration on stainless steel induced by bio-inspired multi-scale surface patterns. Materials and Design, 150, 55–63

    Article  Google Scholar 

  37. Guo, P., & Ehmann, K. F. (2013). Development of a tertiary motion generator for elliptical vibration texturing. Precision Engineering, 37, 364–371

    Article  Google Scholar 

  38. Guo, P., Lu, Y., Ehmann, K. F., & Cao, J. (2014). Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting. CIRP Annals-Manufacturing Technology, 63, 553–556

    Article  Google Scholar 

  39. Lu, Y., Guo, P., Pei, P. C., & Ehmann, K. F. (2015). Experimental studies of wettability control on cylindrical surfaces by elliptical vibration texturing. International Journal of Advanced Manufacturing Technology, 76, 1807–1817

    Article  Google Scholar 

  40. Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87

    Article  Google Scholar 

  41. Wenzel, R. N. (1949). Surface roughness and contact angle. The Journal of Physical Chemistry, 53(9), 1466–1467

    Article  Google Scholar 

  42. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551

    Article  Google Scholar 

  43. Cassie, A. B. D. (1948). Contact angles. Discussions of the Faraday Society, 3, 11–16

    Article  Google Scholar 

  44. Li, W., & Amirfazli, A. (2007). Microtextured superhydrophobic surfaces: A thermodynamic analysis. Advances in Colloid and Interface Science, 132(2), 51–68

    Article  Google Scholar 

  45. Gao, L., & McCarthy, T. J. (2006). Contact angle hysteresis explained. Langmuir, 22(14), 6234–6237

    Article  Google Scholar 

  46. Asakura, K., & Yan, J. W. (2005). Water repellency control of oxygen-free copper surface by diamond-cut micro grooves. International Journal of Automation Technology, 9(4), 396–402

    Article  Google Scholar 

Download references

Acknowledgements

Jianguo Zhang is grateful for the part of original support from the National Natural Science Foundation of China (No. 51905194), the Wuhan Science and Technology Plan in China (No. 2019010701011400) and the Key Laboratory for Precision and Non-traditional Machining Technology, Ministry of Education, Dalian University of Technology, China (B201901). A. Rosenkranz gratefully acknowledges the financial support given by ANID-Chile in the Fondecyt projects 11180121 and 1191179 as well as the University of Chile in the framework of “U-Inicia UI013/2018”. A. Rosenkranz also acknowledges the financial support of Chinese Academy of Sciences President’s International Fellowship Initiative (2020VEC0006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Rosenkranz, Junjie Zhang or Jianfeng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Rosenkranz, A., Zhang, J. et al. Modified Wettability of Micro-structured Steel Surfaces Fabricated by Elliptical Vibration Diamond Cutting. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 1387–1397 (2022). https://doi.org/10.1007/s40684-021-00358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00358-z

Keywords

Navigation