Skip to main content
Log in

Tin Layer as a Solid Lubricant for Cold Tube Drawing Processes

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This paper reports an investigation into the deployment of a thin layer of tin as a lubricant on low carbon steel tube for tube drawing process. The layer was deposited using electro-deposition technique using a green technology of citric acid based electrolyte bath. Coating layer is characterized using SEM, EDS and 3D digital microscopy technique before and after drawing processes. Experimental trials of drawing operation were conducted and promising results were observed with respect to drawing load and surface quality. The observed drawing load is comparable to that with the conventional lubrication system thereby proving the effectiveness of the new proposed lubrication system. The use of proposed lubrication resulted in greatly improved finish as well as better corrosion resistance yielding an additional promise for better value in service life, better market potential as well as a gain on environment front as the proposed method has the potential to eliminate some after operations after drawing as the drawn tube is ready to use after drawing operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jian, C., Ekkard, B., Mingwang, F., Robert, X. G., Biao, L., Marion, M., et al. (2019). Manufacturing of advanced smart tooling for metal forming. CIRP Annals, 68(2), 605–628. https://doi.org/10.1016/j.cirp.2019.05.001.

    Article  Google Scholar 

  2. Luiz, O. T., Neves, F. O., & De Paula, T. C. (2020). Heat treatment and lubrication analysis of the surface integrity of cold extruded metals. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 329–336. https://doi.org/10.1007/s40684-019-00091-8.

    Article  Google Scholar 

  3. Behrooz, Z. D., & Behnam, D. (2016). Assessing the lubrication performance of vegetable oil-based nano-lubricants for environmentally conscious metal forming processes. Journal of Cleaner Production, 135, 1198–1209. https://doi.org/10.1016/j.jclepro.2016.07.040.

    Article  Google Scholar 

  4. Vollertsen, F., & Schmidt, F. (2014). Dry metal forming: Definition, chances and challenges. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 59–62. https://doi.org/10.1007/s40684-014-0009-0.

    Article  Google Scholar 

  5. Tenner, J., Zhao, R., & Tremmel, S. (2018). Tribological behavior of carbon based coatings adapted to lubricant-free forming conditions. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 361–367. https://doi.org/10.1007/s40684-018-0038-1.

    Article  Google Scholar 

  6. Nielsen, C. V., & Bay, N. (2018). Review of friction modeling in metal forming processes. Journal of Materials Processing Technology, 255, 234–241. https://doi.org/10.1016/j.jmatprotec.2017.12.023.

    Article  Google Scholar 

  7. Erdemir, A. (2001). Solid lubricants and self-lubricating films (pp. 1–39). Lemont: Argonne National Laboratory.

    Google Scholar 

  8. Zhang, Z. J., Simionesie, D., & Schaschke, C. (2014). Graphite and hybrid nano materials as lubricant additives. Lubricants, 2(2), 44–65. https://doi.org/10.3390/lubricants2020044.

    Article  Google Scholar 

  9. Azman, N. F., & Samion, S. (2019). Dispersion stability and lubrication mechanism of nanolubricants: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 393–414. https://doi.org/10.1007/s40684-019-00080-x.

    Article  Google Scholar 

  10. Shankara, A., Menezes, P. L., Simha, K., & Kailas, S. V. (2008). Study of solid lubrication with MoS2 coating in the presence of additives using reciprocating ball-on-flat scratch tester. Sadhana, 33, 207–220. https://doi.org/10.1007/s12046-008-0014-5.

    Article  Google Scholar 

  11. Ravees, C. J., Lovell, P., Jen, M., & Chien, T. (2013). Tribology of solid lubricants. In S. P. Ingole, M. Nosonovsky, S. V. Kailas, & M. R. Lovell (Eds.), Tribology for scientists and engineers (pp. 447–494). New York: Springer.

    Chapter  Google Scholar 

  12. Stachowiak, G., & Batchelor, A. W. (2005). Engineering Tribology (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  13. Regalla, S. P., Anirudh, K. V., & Narela, S. (2018). Tribological performance of Zinc soft metal coatings in solid lubrication. IOP Conference Series Materials Science and Engineering, 346, 012–022. https://doi.org/10.1088/1757899X/346/1/012022.

    Article  Google Scholar 

  14. Wisander, D. W. (1971). Lead, Indium and Tin as potential lubricants in liquid hydrogen. Cleveland: Lewis Research Center.

    Google Scholar 

  15. Alekseev, N. M., Kragelskii, I. V., & Troyanovskaya, G. I. (1977). Solid lubricant coatings. Moscow: Nauka.

    Google Scholar 

  16. Miyoshi, K. (2007). Solid lubricants and coatings for extreme environments: state-of-the-art survey. Cleveland: Glenn Research Center.

    Google Scholar 

  17. Sherbiney, M. A., & Halling, J. (1977). Friction and Wear of Ion-Plated Soft Metallic Film. Wear, 45(2), 211–220. https://doi.org/10.1016/0043-1648(77)90075-8.

    Article  Google Scholar 

  18. Okamoto, N., Wang, F., & Watanabe, T. (2004). Adhesion of electrodeposited copper, nickel and silver films on copper, nickel and silver substrates. Materials Transaction, 45(12), 3330–3333. https://doi.org/10.2320/matertrans.45.3330.

    Article  Google Scholar 

  19. Sagisaka, Y., Ishibashi, I., Nakamura, T., Sekizawa, M., & Kawano, M. (2012). Evaluation of environmentally friendly lubricants for cold forging. Journal of Materials Processing Technology, 212(9), 1869–1874. https://doi.org/10.1016/j.jmatprotec.2012.04.011.

    Article  Google Scholar 

  20. Bay, N., Azushima, A., Groche, P., Ishibashi, I., Merklein, M., Morishita, M., et al. (2010). Environmentally benign tribo-systems for metal forming. Annals of the CIRP Manufacturing Technologies, 59(2), 760–780. https://doi.org/10.1016/j.cirp.2010.05.007.

    Article  Google Scholar 

  21. Lee, C. M., Choi, Y. H., & Ha, J. H. (2017). Eco-friendly technology for recycling of cutting fluids and metal chips: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 457–468. https://doi.org/10.1007/s40684-017-0051-9.

    Article  Google Scholar 

  22. Wilson, W.R.D., (1991). Lubrication in metal forming, In Dalmaz, G., Childs, D., Dowson, THC., Taylor, CM. (Ed.) Lubricants and Lubrication. ISBN: 9780080875941

  23. Sharma, S. M., & Anand, A. (2016). Solid lubrication in iron based materials—A review. Tribology in Industry, 38(3), 318–331.

    Google Scholar 

  24. Kim, H. J., Shin, D. G., & Kim, D. E. (2016). Frictional behavior between silicon and steel coated with graphene oxide in dry sliding and water lubrication conditions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 91–97. https://doi.org/10.1007/s40684-016-0012-8.

    Article  Google Scholar 

  25. Arnell, R.D., Davies, P.B., Halling, J., Whomes, T.L. (1991). Tribology, Palgrave, London. https://doi.org/10.1007/978-1-349-21387-0.

  26. Button, S. T. (2012). Tribology in metal forming processes. In J. P. Davim (Ed.), Tribology in manufacturing technology. Berlin: Springer. https://doi.org/10.1007/978-3-642-31683-8_3.

    Chapter  Google Scholar 

  27. Wang, L., Zhou, J., Duszczyk, J., & Katgerman, L. (2012). Identification of a friction model for the bearing channel of hot aluminium extrusion dies by using ball-on-disc tests. Tribology International, 50, 66–75. https://doi.org/10.1016/j.triboint.2012.01.010.

    Article  Google Scholar 

  28. Kim, Y. S., Jain, M. K., & Metzger, D. R. (2012). Determination of pressure-dependent friction coefficient from draw-bend test and its application to cup drawing. International Journal of Machine Tools and Manufacture, 56, 69–77. https://doi.org/10.1016/j.ijmachtools.2011.12.011.

    Article  Google Scholar 

  29. Merklein, M., Andreas, K., & Steiner, J. (2015). Influence of tool surface on tribological conditions in conventional and dry sheet metal forming. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 131–137. https://doi.org/10.1007/s40684-015-0017-8.

    Article  Google Scholar 

  30. Joun, M. S., Moon, H. G., Choi, I. S., Lee, M. C., & Jun, B. Y. (2009). Effects of friction laws on metal forming processes. Tribology International, 42, 311–319. https://doi.org/10.1016/j.triboint.2008.06.012.

    Article  Google Scholar 

  31. Kim, H. (2012). Friction and Lubrication. In T. Altan & A. E. Tekkaya (Eds.), Sheet Metal Forming—Fundamentals. Cleveland: ASM International.

    Google Scholar 

  32. Mark, G., Gracious, N., & Altana, T. (2007). Evaluation of new cold forging lubricants without zinc phosphate precoat. International Journal of Machine Tools and Manufacture, 47, 673–681.

    Article  Google Scholar 

  33. Schey, J. (1983). Tribology in Metal forming. Metals Park: American Society for Metals.

    Google Scholar 

  34. Panagopoulos, C. N., & Georgiou, E. P. (2010). Cold rolling and lubricated wear of 5083 aluminium alloy. Materials and Design, 31(3), 1050–1055. https://doi.org/10.1016/j.matdes.2009.09.056.

    Article  Google Scholar 

  35. Bowden, F. P., & Tabor, D. (1951). The friction and lubrication of solids. American Journal of Physics, 19, 428–430. https://doi.org/10.1119/1.1933017.

    Article  MATH  Google Scholar 

  36. Brinksmeier, E., Meyer, D., Huesmann-Cordes, A. G., & Herrmann, C. (2015). Metalworking fluids—Mechanisms and performance. CIRP Annals—Manufacturing Technology, 64(2015), 605–628.

    Article  Google Scholar 

  37. Davis, G. D. (2018). Surface treatments of selected materials. In L. F. M. Da-Silva, A. Öchsner, & R. D. Adams (Eds.), Handbook of adhesion technology (pp. 163–195). Cham: Springer.

    Chapter  Google Scholar 

  38. Kazimierczak, H., Ozga, P., Jałowiec, A., & Kowalik, R. (2014). Tin–zinc Alloy electro-deposition from Aqueous Citrate Baths. Surface & Coatings Technology, 240(15), 311–319. https://doi.org/10.1016/j.surfcoat.2013.12.046.

    Article  Google Scholar 

  39. ISO:9227, (2006). Corrosion tests in artificial atmospheres—Salt spray tests, Ref. No. ISO 9227:2006(E).

Download references

Acknowledgements

We gratefully acknowledge the research grant received from Tube Investments of India Ltd., Chennai, India to carry out this work in addition to the grant of permission as well as the technical help for completing the experiments at the industrial facility. We received overwhelming support at Tube Investments of India Ltd., Chennai, India.

Funding

The research Grant worth INR 2.745 million received from Tube Investments of India Ltd., Chennai, India for carrying out the reported research investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varinder Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, M., Singh, V., Gupta, A.K. et al. Tin Layer as a Solid Lubricant for Cold Tube Drawing Processes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 459–472 (2022). https://doi.org/10.1007/s40684-020-00301-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00301-8

Keywords

Navigation