Skip to main content
Log in

Long-Lasting Superhydrophilic and Instant Hydrophobic Micropatterned Stainless Steel Surface by Thermally-Induced Surface Layers

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

We present a novel method of realizing instant hydrophobic and long-lasting superhydrophilic states on stainless steel (SS) surfaces by micropatterning and thermally-induced surface layers (TISL). Heat treatment of SS surfaces in the air for 6 h yields hydrophobic TISLs at 140 °C and hydrophilic TISLs at 300 °C. The result of X-ray photoelectron spectroscopy reveals the correlation of chromium depletion with the hydrophilic TISLs, as well as surface oxidation with the hydrophobic TISLs. We fabricated superhydrophilic SS surfaces holding the wettability over 40 days, and hydrophobic SS surfaces realized in an hour-scale period via the fabrication process comprised of laser beam machining, electrochemical etching, and heat treatment in serial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wen, L., Tian, Y., & Jiang, L. (2015). Bioinspired super-wettability from fundamental research to practical applications. Angewandte Chemie International Edition, 54(11), 3387–3399.

    Google Scholar 

  2. Yao, X., Song, Y., & Jiang, L. (2011). Applications of bio-inspired special wettable surfaces. Advanced Materials, 23(6), 719–734.

    Google Scholar 

  3. Barthwal, S., & Lim, S.-H. (2020). Robust and chemically stable superhydrophobic aluminum-alloy surface with enhanced corrosion-resistanceproperties. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 481–492.

    Google Scholar 

  4. Liu, K., & Jiang, L. (2011). Metallic surfaces with special wettability. Nanoscale, 3(3), 825–838.

    Google Scholar 

  5. Lo, K. H., Shek, C. H., & Lai, J. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4–6), 39–104.

    Google Scholar 

  6. Ryan, M. P., Williams, D. E., Chater, R. J., Hutton, B. M., & McPhail, D. S. (2002). Why stainless steel corrodes. Nature, 415(6873), 770.

    Google Scholar 

  7. Jafari, A., Meshkani, S., & Ghoranneviss, M. (2016). The study of surface properties of tokamak first wall using TiN coated on stainless steel. Journal of Fusion Energy, 35(2), 235–239.

    Google Scholar 

  8. Staib, P., Dylla, H., & Rossnagel, S. M. (1980). The surface chemistry of stainless steel and evaporated titanium layers in tokamaks. Journal of Nuclear Materials, 93, 315–321.

    Google Scholar 

  9. Davies, D., Adcock, P., Turpin, M., & Rowen, S. (2000). Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources, 86(1–2), 237–242.

    Google Scholar 

  10. Asri, N. F., Husaini, T., Sulong, A. B., Majlan, E. H., & Daud, W. R. W. (2017). Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. International Journal of Hydrogen Energy, 42(14), 9135–9148.

    Google Scholar 

  11. Li, L., Zhang, G., & Su, Z. (2016). One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angewandte Chemie International Edition, 55(31), 9093–9096.

    Google Scholar 

  12. Wang, H., Zou, M., & Wei, R. (2009). Superhydrophilic textured-surfaces on stainless steel substrates. Thin Solid Films, 518(5), 1571–1574.

    Google Scholar 

  13. Xue, Z., Wang, S., Lin, L., Chen, L., Liu, M., Feng, L., et al. (2011). A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials, 23(37), 4270–4273.

    Google Scholar 

  14. Yang, J., Zhang, Z., Xu, X., Zhu, X., Men, X., & Zhou, X. (2012). Superhydrophilic–superoleophobic coatings. Journal of Materials Chemistry, 22(7), 2834–2837.

    Google Scholar 

  15. Bagherifard, S., Hickey, D. J., de Luca, A. C., Malheiro, V. N., Markaki, A. E., Guagliano, M., et al. (2015). The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials, 73, 185–197.

    Google Scholar 

  16. Ceylan, H., Tekinay, A. B., & Guler, M. O. (2011). Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials, 32(34), 8797–8805.

    Google Scholar 

  17. Müller, R., Abke, J., Schnell, E., Macionczyk, F., Gbureck, U., Mehrl, R., et al. (2005). Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility. Biomaterials, 26(34), 6962–6972.

    Google Scholar 

  18. Li, L., Breedveld, V., & Hess, D. W. (2012). Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition. ACS Applied Materials & Interfaces, 4(9), 4549–4556.

    Google Scholar 

  19. Liu, Y., Bai, Y., Jin, J., Tian, L., Han, Z., & Ren, L. (2015). Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate. Applied Surface Science, 355, 1238–1244.

    Google Scholar 

  20. Wu, B., Zhou, M., Li, J., Ye, X., Li, G., & Cai, L. (2009). Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Applied Surface Science, 256(1), 61–66.

    Google Scholar 

  21. Chen, L. J., Chen, M., Di Zhou, H., & Chen, J. M. (2008). Preparation of super-hydrophobic surface on stainless steel. Applied Surface Science, 255(5), 3459–3462.

    Google Scholar 

  22. Liang, J., Li, D., Wang, D., Liu, K., & Chen, L. (2014). Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification. Applied Surface Science, 293, 265–270.

    Google Scholar 

  23. Beckford, S., & Zou, M. (2011). Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces. Thin Solid Films, 520(5), 1520–1524.

    Google Scholar 

  24. Kim, D., Kim, J. G., & Chu, C. N. (2016). Aging effect on the wettability of stainless steel. Materials Letters, 170, 18–20.

    Google Scholar 

  25. Bae, W. G., Song, K. Y., Rahmawan, Y., Chu, C. N., Kim, D., Chung, D. K., et al. (2012). One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. ACS Applied Materials & Interfaces, 4(7), 3685–3691.

    Google Scholar 

  26. Bae, W.-G., Kim, D., Song, K. Y., Jeong, H. E., & Chu, C. N. (2015). Engineering stainless steel surface via wire electrical discharge machining for controlling the wettability. Surface and Coatings Technology, 275, 316–323.

    Google Scholar 

  27. Cardoso, J., Aguilar-Morales, A., Alamri, S., Huerta-Murillo, D., Cordovilla, F., Lasagni, A., et al. (2018). Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy. Optics and Lasers in Engineering, 111, 193–200.

    Google Scholar 

  28. Kwon, M. H., Shin, H. S., & Chu, C. N. (2014). Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition. Applied Surface Science, 288, 222–228.

    Google Scholar 

  29. Ta, D. V., Dunn, A., Wasley, T. J., Kay, R. W., Stringer, J., Smith, P. J., et al. (2015). Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Applied Surface Science, 357, 248–254.

    Google Scholar 

  30. Kietzig, A.-M., Hatzikiriakos, S. G., & Englezos, P. (2009). Patterned superhydrophobic metallic surfaces. Langmuir, 25(8), 4821–4827.

    Google Scholar 

  31. Allahyari, E., Nivas, J. J., Oscurato, S. L., Salvatore, M., Ausanio, G., Vecchione, A., et al. (2018). Laser surface texturing of copper and variation of the wetting response with the laser pulse fluence. Applied Surface Science., 470, 817–824.

    Google Scholar 

  32. Geng, W., Hu, A., & Li, M. (2012). Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro–nano cones array. Applied Surface Science, 263, 821–824.

    Google Scholar 

  33. Wang, G., & Zhang, T.-Y. (2012). Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface. Journal of Colloid and Interface Science, 377(1), 438–441.

    Google Scholar 

  34. Long, J., Zhong, M., Zhang, H., & Fan, P. (2015). Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. Journal of Colloid and Interface Science, 441, 1–9.

    Google Scholar 

  35. Chun, D.-M., Ngo, C.-V., & Lee, K.-M. (2016). Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing. CIRP Annals-Manufacturing Technology, 65(1), 519–522.

    Google Scholar 

  36. Zhang, Y., Zou, G., Liu, L., Zhao, Y., Liang, Q., Wu, A., et al. (2016). Time-dependent wettability of nano-patterned surfaces fabricated by femtosecond laser with high efficiency. Applied Surface Science, 389, 554–559.

    Google Scholar 

  37. Ngo, C.-V., & Chun, D.-M. (2017). Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing. Applied Surface Science, 409, 232–240.

    Google Scholar 

  38. Trdan, U., Hočevar, M., & Gregorčič, P. (2017). Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corrosion Science, 123, 21–26.

    Google Scholar 

  39. Masseria, V. (1981). Metals handbook: Heat treatment. Cleveland: American Society for Metals.

    Google Scholar 

  40. Lee, S. W., Shin, H. S., & Chu, C. N. (2013). Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining. Applied Surface Science, 264, 653–663.

    Google Scholar 

  41. Shin, H., Park, M., & Chu, C. (2010). Electrochemical etching using laser masking for multilayered structures on stainless steel. CIRP Annals, 59(1), 585–588.

    Google Scholar 

  42. Quéré, D. (2008). Wetting and roughness. Annual Review of Materials Research, 38, 71–99.

    Google Scholar 

  43. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., et al. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114–4119.

    Google Scholar 

  44. Hakiki, N., Montemor, M., Ferreira, M., & da Cunha Belo, M. (2000). Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corrosion Science, 42(4), 687–702.

    Google Scholar 

  45. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrences and uses. Hoboken: Wiley.

    Google Scholar 

  46. Khanna, A. S. (2002). Introduction to high temperature oxidation and corrosion. Cleveland: ASM International.

    Google Scholar 

  47. Demidov, A., & Markelov, I. (2010). Thermodynamics of formation of iron oxides and their hydrogen reduction. Russian Journal of Applied Chemistry, 83(2), 232–236.

    Google Scholar 

  48. Mittal, A., Albertsson, G. J., Gupta, G. S., Seetharaman, S., & Subramanian, S. (2014). Some thermodynamic aspects of the oxides of chromium. Metallurgical and Materials Transactions B, 45(2), 338–344.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Research Lab Program through the National Research Foundation of Korea (NRF) funded by the MSIT (2018R1A4A1059976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Gil Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This study is dedicated to the late Professor Chong Nam Chu who deceased 28 April 2019.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kim, JG., Kim, T. et al. Long-Lasting Superhydrophilic and Instant Hydrophobic Micropatterned Stainless Steel Surface by Thermally-Induced Surface Layers. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 435–444 (2021). https://doi.org/10.1007/s40684-020-00207-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00207-5

Keywords

Navigation