Skip to main content
Log in

Surface Treatment of Pt Cathode Using Ceria Infiltration for High Performance Polymer Electrolyte Membrane Fuel Cells

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study evaluates the performance and stability of Pt cathodes, which are treated by infiltrating cerium oxide (CeOx) onto their surfaces, in polymer electrolyte membrane fuel cells. The concentration of CeOx on the surface of Pt is adjusted by varying the concentration of the cerium precursor in the infiltration solution. The peak power density of the cell using the Pt cathode featuring the optimal amount of infiltrated CeOx is as high as 400 mW cm−2 at 70 °C, which is approximately 40% higher than that of the cell using the untreated Pt cathode under identical test conditions. Electrochemical impedance analysis confirms that this increase in peak power density is clearly attributed to the decrease in cathodic polarization impedance, which implies that the CeOx deposited on the surface of Pt enhances the catalytic performance of Pt. The infiltration of CeOx on the surface of Pt is also confirmed to be truly effective for improving the stability of Pt. Accelerated degradation tests demonstrate that the degradation rates of the cells using CeOx-Pt cathodes are significantly lower than that of the cell using the untreated Pt cathode because of the preservation of electrochemically active sites, as revealed by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Debe, M. K. (2012). Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486(7401), 43–51.

    Google Scholar 

  2. Zhang, L., Zhang, J., Wilkinson, D. P., & Wang, H. (2006). Progress in preparation of non noble electrocatalysts for PEM fuel cell reactions. Journal of Power Sources, 156(2), 171–182.

    Google Scholar 

  3. Seo, Y. H., Kim, H. J., Jang, W. K., & Kim, B. H. (2014). Development of active breathing micro PEM fuel cell. International Journal of Precision Engineering and Manufacturing Green Technology, 1(2), 101–106.

    Google Scholar 

  4. Zheng, C., Cha, S. W., Park, Y.-I., Lim, W. S., & Xu, G. (2013). PMP-based power management strategy of fuel cell hybrid vehicles considering multi-objective optimization. International Journal of Precision Engineering and Manufacturing, 14(5), 845–853.

    Google Scholar 

  5. Park, S. B., & Park, Y.-I. (2012). Fabrication of gas diffusion layer (GDL) containing microporous layer using flourinated ethylene prophylene (FEP) for proton exchange membrane fuel cell (PEMFC). International Journal of Precision Engineering and Manufacturing, 13(7), 1145–1151.

    Google Scholar 

  6. Cheema, T. A., Kim, G. M., Lee, C. Y., Kwak, M. K., Kim, H. B., & Park, C. W. (2014). Effects of composite porous gas-diffusion layers on performance of proton exchange membrane fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 305–312.

    Google Scholar 

  7. Yi, H.-S., Jeong, J.-B., Cha, S.-W., & Zheng, C.-H. (2018). Optimal component sizing of fuel cell-battery excavator based on workload. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 103–110.

    Google Scholar 

  8. Selvaganesh, S. V., Selvarani, G., Sridhar, P., Pitchumani, S., & Shukla, A. K. (2011). Durable electrocatalytic activity of Pt–Au/C cathode in PEMFCs. Physical Chemistry Chemical Physics, 13(27), 12623–12634.

    Google Scholar 

  9. Kang, Y. S., Jo, S., Choi, D., Kim, J. Y., Park, T., & Yoo, S. J. (2019). Pt-sputtered Ti mesh electrode for polymer electrolyte membrane fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 271–279.

    Google Scholar 

  10. Wang, J., Yin, G., Shao, Y., Zhang, S., Wang, Z., & Gao, Y. (2007). Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 171(2), 331–339.

    Google Scholar 

  11. Takenaka, S., Matsumori, H., Matsune, H., Tanabe, E., & Kishida, M. (2008). High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC. Journal of the Electrochemical Society, 155(9), B929–B936.

    Google Scholar 

  12. Borup, R. L., Davey, J. R., Garzon, F. H., Wood, D. L., & Inbody, M. A. (2006). PEM fuel cell electrocatalyst durability measurements. Journal of Power Sources, 163(1), 76–81.

    Google Scholar 

  13. Paik, C. H., Saloka, G. S., & Graham, G. W. (2007). Influence of cyclic operation on PEM fuel cell catalyst stability. Electrochemical and Solid-State Letters, 10(2), B39–B42.

    Google Scholar 

  14. Jeon, Y., Na, H., Hwang, H., Park, J., Hwang, H., & Shul, Y.-G. (2015). Accelerated life time test protocols for polymer electrolyte membrane fuel cells operated at high temperature. International Journal of Hydrogen Energy, 40(7), 3057–3067.

    Google Scholar 

  15. Takabatake, Y., Noda, Z., Lyth, S. M., Hayashi, A., & Sasaki, K. (2014). Cycle durability of metal oxide supports for PEFC electrocatalysts. International Journal of Hydrogen Energy, 39(10), 5074–5082.

    Google Scholar 

  16. Shim, J., Lee, C.-R., Lee, H.-K., Lee, J.-S., & Cairns, E. J. (2001). Electrochemical characteristics of Pt-WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. Journal of Power Sources, 102(1), 172–177.

    Google Scholar 

  17. Amin, R. S., Fetohi, A. E., Hameed, R. M. A., & El-Khatib, K. M. (2016). Electrocatalytic activity of Pt–ZrO2 supported on different carbon materials for methanol oxidation in H2SO4 solution. International Journal of Hydrogen Energy, 41(3), 1846–1858.

    Google Scholar 

  18. Lim, D.-H., Lee, W.-J., Macy, N. L., & Smyrl, W. H. (2009). Electrochemical durability investigation of Pt/TiO2 nanotube catalysts for polymer electrolyte membrane fuel cells. Electrochemical and Solid-State Letters, 12(9), B123–B125.

    Google Scholar 

  19. Senevirathne, K., Hui, R., Campbell, S., Ye, S., & Zhang, J. (2012). Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 59, 538–547.

    Google Scholar 

  20. Chen, Y., Wang, J., Meng, X., Zhong, Y., Li, R., Sun, X., et al. (2013). Pt–SnO2/nitrogen doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition. Journal of Power Sources, 238, 144–149.

    Google Scholar 

  21. Xu, H., & Hou, X. (2007). Synergistic effect of CeO2 modified Pt/C electrocatalysts on the performance of PEM fuel cells. International Journal of Hydrogen Energy, 32(17), 4397–4401.

    Google Scholar 

  22. Chang, I., Kim, D., Lee, Y., Hong, S.-H., & Cha, S. W. (2016). Effect of ultra-thin SnO2 coating on Pt catalyst for energy applications. International Journal of Precision Engineering and Manufacturing, 17(5), 691–694.

    Google Scholar 

  23. Lee, K. H., Kwon, K., Roev, V., Yoo, D. Y., Chang, H., & Seung, D. (2008). Synthesis and characterization of nanostructured PtCo-CeOx/C for oxygen reduction reaction. Journal of Power Sources, 185(2), 871–875.

    Google Scholar 

  24. Fugane, K., Mori, T., Ou, D. R., Suzuki, A., Yoshikawa, H., Masuda, T., et al. (2011). Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application. Electrochimica Acta, 56(11), 3874–3883.

    Google Scholar 

  25. Ou, D. R., Mori, T., Fugane, K., Togasaki, H., Ye, F., & Drennan, J. (2011). Stability of ceria supports in Pt–CeOx/C catalysts. Journal of Physical Chemistry C, 115(39), 19239–19245.

    Google Scholar 

  26. Fiala, R., Vaclavu, M., Rednyk, A., Khalakhan, I., Vorokhta, M., Lavkova, J., et al. (2015). Pt–CeOx thin film catalysts for PEMFC. Catalysis Today, 240, 236–241.

    Google Scholar 

  27. Mori, T., Fugane, K., Chauhan, S., Ito, M., Masuda, T., Noguchi, H., et al. (2014). Design of Pt–CeOx hetero-interface on electrodes in polymer electrolyte membrane fuel cells. IOP Conference Series: Materials Science and Engineering, 54, 01201.

    Google Scholar 

  28. Valk, P., Nerut, J., Kanarbik, R., & Lust, E. (2016). Facile synthesis of high performance platinum-cerium oxide nanocatalysts for methanol oxidation. ECS Transactions, 75(14), 1005–1012.

    Google Scholar 

  29. Yang, S., & Gao, L. (2006). Controlled synthesis and self-assembly of CeO2 nanocubes. Journal of the American Chemical Society, 128(29), 9330–9331.

    Google Scholar 

  30. Pierre, D., Deng, W., & Flytzani-Stephanopoulos, M. (2007). The importance of strongly bound Pt CeOx species for the water-gas shift reaction: Catalyst activity and stability evaluation. Topics in Catalysis, 46(3), 363–373.

    Google Scholar 

  31. Lim, D.-H., Lee, W.-D., Choi, D.-H., & Lee, H.-I. (2010). Effect of ceria nanoparticles into the Pt/C catalyst as cathode material on the electrocatalytic activity and durability for low temperature fuel cell. Applied Catalysis B: Environmental, 94(1), 85–96.

    Google Scholar 

  32. Masuda, T., Fukumitsu, H., Fugane, K., Togasaki, H., Matsumura, D., Tamura, K., et al. (2012). Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt–CeOx nanocomposite electrocatalyst—an in situ electrochemical X-ray absorption fine structure study. Journal of Physical Chemistry C, 116(18), 10098–10102.

    Google Scholar 

  33. Xu, F., Wang, D., Sa, B., Yu, Y., & Mu, S. (2017). One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC. International Journal of Hydrogen Energy, 42(18), 13011–13019.

    Google Scholar 

  34. Riese, A., Banham, D., Ye, S., & Sun, X. (2015). Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports. Journal of the Electrochemical Society, 162(7), F783–F788.

    Google Scholar 

  35. Ding, D., Li, X., Lai, S. Y., Gerdes, K., & Liu, M. (2014). Enhancing SOFC cathode performance by surface modification through infiltration. Energy & Environmental Science, 7(2), 552–575.

    Google Scholar 

  36. Lynch, M. E., Yang, L., Qin, W., Choi, J.-J., Liu, M., Blinn, K., et al. (2011). Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy & Environmental Science, 4(6), 2249–2258.

    Google Scholar 

  37. Nie, L., Liu, M., Zhang, Y., & Liu, M. (2010). La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium doped cerium oxide for solid oxide fuel cells. Journal of Power Sources, 195(15), 4704–4708.

    Google Scholar 

  38. O’Nei, A., & Watkins, J. J. (2007). Reactive deposition of conformal metal oxide films from supercritical carbon dioxide. Chemistry of Materials, 19(23), 5460–5466.

    Google Scholar 

  39. Choi, J. S., Sohn, J.-Y., & Shin, J. (2015). A comparative study on EB-radiatio deterioration of nafion membrane in water and isopropanol solvents. Energies, 8(6), 5370–5380.

    Google Scholar 

  40. Lei, M., Wang, Z. B., Li, J. S., Tang, H. L., Liu, W. J., & Wang, Y. G. (2014). CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Scientific Reports, 4, 7415.

    Google Scholar 

  41. U.S. DRIVE Fuel Cell Tech Team. (2010). Cell component accelerated stress test and polarization curve protocols for PEM fuel cells, U.S. Department of Energy. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/component_durability_may_2010.pdf. Accessed 10 June 2019.

  42. Campbell, C. T., & Peden, C. H. F. (2005). Oxygen vacancies and catalysis on ceria surfaces. Science, 309(5735), 713–714.

    Google Scholar 

  43. Dutta, P., Pal, S., Seehra, M. S., Shi, Y., Eyring, E. M., & Ernst, R. D. (2006). Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chemistry of Materials, 18(21), 5144–5146.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2019R1A2C2003054) and Korea Electric Power Corporation (Grant number: R17XA05-57).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Hyung Shim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Koo, J., Han, G.D. et al. Surface Treatment of Pt Cathode Using Ceria Infiltration for High Performance Polymer Electrolyte Membrane Fuel Cells. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 509–518 (2021). https://doi.org/10.1007/s40684-020-00191-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00191-w

Keywords

Navigation