Skip to main content
Log in

Effect of Maleated Anhydride on Mechanical Properties of Rice Husk Filler Reinforced PLA Matrix Polymer Composite

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fibre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a filler in the PLA, so to determine the influence of the filler loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, flexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and flexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the flexural strength was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASTM:

American standard for testing material

MAPE:

Maleic anhydride polyethylene

MAPP:

Maleic anhydride polypropylene

PLA:

Polylactic acid

RHP:

Rice husk powder

RHP–PLA:

Rice husk powder reinforced polylactic acid

SEM:

Scanning electron microscopic

wt:

Weight

References

  1. Chand, N., Sharma, P., & Fahim, M. (2010). Tribology of maleic anhydride modified rice-husk filled polyvinylchloride. Wear, 269(11), 847–853.

    Article  Google Scholar 

  2. Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of processability of rice husk filled high-density polyethylene composite profiles. Journal of Thermoplastic Composite Materials, 18(5), 445–458.

    Article  Google Scholar 

  3. Derraik, J. G. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44(9), 842–852.

    Article  Google Scholar 

  4. Väisänen, T., Das, O., & Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. The Journal of Cleaner Production, 149, 582–596.

    Article  Google Scholar 

  5. Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Science and Engineering of Composite Materials, 23(2), 123–133.

    Article  Google Scholar 

  6. Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management (Oxford), 54, 62–73.

    Article  Google Scholar 

  7. Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites: Part A, 77, 1–25.

    Article  Google Scholar 

  8. Shah, A. U. R., Prabhakar, M., & Song, J.-I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262.

    Article  Google Scholar 

  9. Asim, M., Jawaid, M., Abdan, K., & Ishak, M. (2018). The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. Journal of Polymers and the Environment, 26(4), 1520–1527.

    Article  Google Scholar 

  10. Siregar, J. P., Salit, M. S., Rahman, M. Z. A., & Dahlan, K. (2011). Thermogravimetric analysis (TGA) and differential scanning calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika Journal of Science and Technology, 19(1), 161–170.

    Google Scholar 

  11. Olusunmade, O. F., Adetan, D. A., & Ogunnigbo, C. O. (2016). A study on the mechanical properties of oil palm mesocarp fibre-reinforced thermoplastic. Journal of Composites, 2016, 7. https://doi.org/10.1155/2016/3137243.

    Article  Google Scholar 

  12. Essabir, H., Bensalah, M., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134–144.

    Article  Google Scholar 

  13. Sajith, S., Arumugam, V., & Dhakal, H. N. (2017). Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, 58, 60–69.

    Article  Google Scholar 

  14. Battegazzore, D., Bocchini, S., Alongi, J., & Frache, A. (2014). Rice husk as bio-source of silica: Preparation and characterization of PLA–silica bio-composites. RSC Advances, 4(97), 54703–54712.

    Article  Google Scholar 

  15. Arjmandi, R., Hassan, A., Majeed, K., & Zakaria, Z. (2015). Rice husk filled polymer composites. International Journal of Polymer Science, 2015, 32. https://doi.org/10.1155/2015/501471.

    Article  Google Scholar 

  16. Aminullah, A., Syed Mustafa, S., Nor Azlan, M., Mohd. Hafizi, N., Mohd. Ishak, Z., & Rozman, H. (2010). Effect of filler composition and incorporation of additives on the mechanical properties of polypropylene composites with high loading lignocellulosic materials. Journal of Reinforced Plastics and Composites, 29(20), 3115–3124.

    Article  Google Scholar 

  17. Yang, H.-S., Kim, H.-J., Son, J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3), 305–312.

    Article  Google Scholar 

  18. Fávaro, S. L., Lopes, M. S., de Carvalho Neto, A. G. V., de Santana, R. R., & Radovanovic, E. (2010). Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites: Part A, 41(1), 154–160.

    Article  Google Scholar 

  19. Rahman, M. R., Islam, M. N., Huque, M. M., Hamdan, S., & Ahmed, A. S. (2010). Effect of chemical treatment on rice husk (RH) reinforced polyethylene (PE) composites. BioResources, 5(2), 854–869.

    Google Scholar 

  20. Ahmad, I., Bakar, A., Ratnasari, D., Mokhilas, S. N., & Ramli, A. (2007). Direct usage of products of poly (ethylene terephthalate) glycolysis for manufacturing of rice husk/unsaturated polyester composite. Iranian Polymer Journal, 16(4), 233–239.

    Google Scholar 

  21. Kumagai, S., Sasaki, K., Shimizu, Y., & Takeda, K. (2008). Formaldehyde and acetaldehyde adsorption properties of heat-treated rice husks. Separation and Purification Technology, 61(3), 398–403.

    Article  Google Scholar 

  22. Petchwattana, N., & Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly (vinyl chloride). Journal of Bionic Engineering, 10(1), 110–117.

    Article  Google Scholar 

  23. Chaitanya, S., & Singh, I. (2018). Ecofriendly treatment of aloe vera fibers for PLA based green composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 143–150.

    Article  Google Scholar 

  24. Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46.

    Article  Google Scholar 

  25. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392.

    Article  Google Scholar 

  26. Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333–366.

    Article  Google Scholar 

  27. Qi, X., Ren, Y., & Wang, X. (2017). New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation, 117, 215–223.

    Article  Google Scholar 

  28. Dimzoski, B., Bogoeva-Gaceva, G., Srebrenkoska, V., Avella, M., Gentile, G., & Errico, M. (2008). Preparation and characterization of poly (lactic acid)/rice hulls based biodegradable composites. Journal of Polymer Engineering, 28(6–7), 369–383.

    Google Scholar 

  29. Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899–2916.

    Article  Google Scholar 

  30. Mohammadi-Rovshandeh, J., Pouresmaeel-Selakjani, P., Davachi, S. M., Kaffashi, B., Hassani, A., & Bahmeyi, A. (2014). Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. Journal of Applied Polymer Science, 131(22). https://doi.org/10.1002/app.41095.

  31. Yussuf, A., Massoumi, I., & Hassan, A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and the Environment, 18(3), 422–429.

    Article  Google Scholar 

  32. Tran, T. P. T., Bénézet, J.-C., & Bergeret, A. (2014). Rice and Einkorn wheat husks reinforced poly (lactic acid)(PLA) biocomposites: Effects of alkaline and silane surface treatments of husks. Industrial Crops and Products, 58, 111–124.

    Article  Google Scholar 

  33. Hua, J., Zhao, Z. M., Yu, W., & Wei, B. Z. (2011). Hydroscopic and mechanical properties performance analysis of rice husk powder/PLA composites (pp. 1231–1235). Geneva: Trans Tech Publications.

    Google Scholar 

  34. Chen, R. S., & Ahmad, S. (2016). Characterization of rice husk biofibre-reinforced recycled thermoplastic blend biocomposite. London: InTech.

    Book  Google Scholar 

  35. Arjmandi, R., Ismail, A., Hassan, A., & Bakar, A. A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 152, 484–493.

    Article  Google Scholar 

  36. Yam, R., & Mak, D. (2014). A cleaner production of rice husk-blended polypropylene eco-composite by gas-assisted injection moulding. Journal of Cleaner Production, 67, 277–284.

    Article  Google Scholar 

  37. Zurina, M., Ismail, H., & Bakar, A. (2004). Rice husk powder–filled polystyrene/styrene butadiene rubber blends. Journal of Applied Polymer Science, 92(5), 3320–3332.

    Article  Google Scholar 

  38. Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369–375.

    Article  Google Scholar 

  39. Kim, H.-S., Lee, B.-H., Choi, S.-W., Kim, S., & Kim, H.-J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites: Part A, 38(6), 1473–1482.

    Article  Google Scholar 

  40. Ihemouchen, C., Djidjelli, H., Boukerrou, A., Fenouillot, F., & Barrès, C. (2013). Effect of compatibilizing agents on the mechanical properties of high-density polyethylene/olive husk flour composites. Journal of Applied Polymer Science, 128(3), 2224–2229.

    Google Scholar 

  41. Huner, U. (2017). Effect of chemical treatment and maleic anhydride grafted polypropylene coupling agent on rice husk and rice husk reinforced composite. Materials Express, 7(2), 134–144.

    Article  Google Scholar 

  42. Obasi, H. C. (2015). Peanut husk filled polyethylene composites: Effects of filler content and compatibilizer on properties. Journal of Polymers, 2015, 9. https://doi.org/10.1155/2015/189289.

    Article  Google Scholar 

  43. Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317–1324.

    Article  Google Scholar 

  44. Premalal, H. G., Ismail, H., & Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing, 21(7), 833–839.

    Article  Google Scholar 

  45. Rosa, S. M. L., Santos, E. F., Ferreira, C. A., & Nachtigall, S. M. B. (2009). Studies on the properties of rice-husk-filled-PP composites: Effect of maleated PP. Materials Research, 12(3), 333–338.

    Article  Google Scholar 

  46. Jaramillo, N., Hoyos, D., & Santa, J. F. (2016). Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingenieria y Competitividad, 18(2), 151–162.

    Article  Google Scholar 

  47. Chandramohan, D., & Presin Kumar, A. J. (2017). Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief, 13, 460–468.

    Article  Google Scholar 

  48. Yaacab, N. D., Ismail, H., & Ting, S. S. (2016). Potential use of paddy straw as filler in poly lactic acid/paddy straw powder biocomposite: Thermal and thermal properties. Procedia Chemistry, 19(Supplement C), 757–762.

    Article  Google Scholar 

  49. Rozman, H., Musa, L., & Abubakar, A. (2005). The mechanical and dimensional properties of rice husk-unsaturated polyester composites. Polymer: Plastics Technology and Engineering, 44(3), 489–500.

    Google Scholar 

  50. Salmah, H., Ruzaidi, C., & Supri, A. (2009). Compatibilisation of polypropylene/ethylene propylene diene terpolymer/kaolin composites: The effect of maleic anhydride-grafted-polypropylene. Journal of Physical Science, 20(1), 99–107.

    Google Scholar 

  51. Salasinska, K., & Ryszkowska, J. (2015). The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces, 22(1), 39–50.

    Article  Google Scholar 

  52. Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200–6206.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Universiti Malaysia Pahang (http://www.ump.edu.my) for providing the facilities and equipment. This research was funded by the Ministry of Higher Education, Malaysia under the Grant no. FRGS140120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. M. Hamdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, M.H.M., Siregar, J.P., Rejab, M.R.M. et al. Effect of Maleated Anhydride on Mechanical Properties of Rice Husk Filler Reinforced PLA Matrix Polymer Composite. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 113–124 (2019). https://doi.org/10.1007/s40684-019-00017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00017-4

Keywords

Navigation