A review on fabrication processes for electrochromic devices

  • Sung-Ik Park
  • Ying-Jun Quan
  • Se-Heon Kim
  • Hyungsub Kim
  • Sooyeun Kim
  • Doo-Man Chun
  • Caroline S. Lee
  • Minoru Taya
  • Won-Shik Chu
  • Sung-Hoon Ahn
Article

Abstract

Electrochromism is a phenomenon involving change of colors under an externally applied voltages Because its importance is rising today, various fabrication processes have been used to manufacture electrochromic devices (ECDs). In this review, solution-, vapor-, and solid particle-based processes are introduced and compared in terms of process parameters. The seven representative fabrication processes discussed in this paper are electrodeposition, sol-gel, spray pyrolysis, chemical vapor deposition (CVD), thermal evaporation deposition, sputtering, and nanoparticle deposition systems (NPDS). Temperature and vacuum conditions for each process are compared. Electrodeposition and sol-gel processes can be performed under atmospheric pressure. Most sputtering and NPDS processes are conducted at room temperature. Although many fabrication processes are reviewed here, commercialization, environmental issues, cost, improvement of performance, and enhancement of product size will be studied for future ECDs.

Keywords

Electrochromic device Thin film deposition Nanoparticle deposition systems (NPDS) Cost effective process of thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, S.-H., “An Evaluation of Green Manufacturing Technologies Based on Research Databases,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 5–9, 2014.CrossRefGoogle Scholar
  2. 2.
    Energy Efficiency & Renewable Energy Department, “DoE U. Buildings Energy Databook,” 2011.Google Scholar
  3. 3.
    Schirmer, O., “Plenary Sessionsmall Polaron Aspects of Defects in Oxide Materials,” Le Journal de Physique Colloques, Vol. 41, No. C6, pp. C6-479-C46-484, 1980.CrossRefGoogle Scholar
  4. 4.
    Gerlach, E., “Carrier Scattering and Transport in Semiconductors Treated by the Energy-Loss Method,” Journal of Physics C: Solid State Physics, Vol. 19, No. 24, DOI No. 10. 1088/0022-3719/19/24/004, 1986.Google Scholar
  5. 5.
    Cogan, S. F., Plante, T. D., Parker, M., and Rauh, R., “Free-Electron Electrochromic Modulation in Crystalline LixWO3,” Journal of Applied Physics, Vol. 60, No. 8, pp. 2735–2738, 1986.CrossRefGoogle Scholar
  6. 6.
    Arntz, F., Goldner, R., Morel, B., Hass, T., and Wong, K., “Near-Infrared Reflectance Modulation with Electrochromic Crystalline WO3 Films Deposited on Ambient Temperature Glass Substrates by an Oxygen Ion-Assisted Technique,” Journal of Applied Physics, Vol. 67, No. 6, pp. 3177–3179, 1990.CrossRefGoogle Scholar
  7. 7.
    Lee, S.-H., Seong, M. J., Cheong, H. M., Ozkan, E., Tracy, E. C., et al., “Effect of Crystallinity on Electrochromic Mechanism of Lix WO3 Thin Films,” Solid State Ionics, Vol. 156, No. 3, pp. 447–452, 2003.CrossRefGoogle Scholar
  8. 8.
    Lupu, N., “Electrodeposited Nanowires and Their Applications,” Sciyo.com, 2010.Google Scholar
  9. 9.
    Liu, G., Cai, W., Kong, L., Duan, G., and Lü, F., “Vertically Cross-Linking Silver Nanoplate Arrays with Controllable Density Based on Seed-Assisted Electrochemical Growth and Their Structurally Enhanced SERS Activity,” Journal of Materials Chemistry, Vol. 20, No. 4, pp. 767–772, 2010.CrossRefGoogle Scholar
  10. 10.
    Tsuboi, A., Nakamura, K., and Kobayashi, N., “Multicolor Electrochromism Showing Three Primary Color States (Cyan-Magenta-Yellow) Based on Size-and Shape-Controlled Silver Nanoparticles,” Chemistry of Materials, Vol. 26, No. 22, pp. 6477–6485, 2014.CrossRefGoogle Scholar
  11. 11.
    Deng, J., Gu, M., and Di, J., “Electrochromic Properties of WO3 Thin Film onto Gold Nanoparticles Modified Indium Tin Oxide Electrodes,” Applied Surface Science, Vol. 257, No. 13, pp. 5903–5907, 2011.CrossRefGoogle Scholar
  12. 12.
    Xia, X., Tu, J., Zhang, J., Xiang, J., Wang, X., et al., “Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties,” ACS Applied Materials & Interfaces, Vol. 2, No. 1, pp. 186–192, 2009.CrossRefGoogle Scholar
  13. 13.
    Yuan, Y., Xia, X., Wu, J., Gui, J., Chen, Y., et al., “Electrochromism in Mesoporous Nanowall Cobalt Oxide Thin Films Prepared via Lyotropic Liquid Crystal Media with Electrodeposition,” Journal of Membrane Science, Vol. 364, No. 1, pp. 298–303, 2010.CrossRefGoogle Scholar
  14. 14.
    Wang, L., Song, X. C., and Zheng, Y. F., “Electrochromic Properties of Nanoporous Co3O4 Thin Films Prepared by Electrodeposition Method,” IET Micro & Nano Letters, Vol. 7, No. 10, pp. 1026–1029, 2012.CrossRefGoogle Scholar
  15. 15.
    Di, Y. D., Field, M. R., O’Mullane, A. P., Kalantar-Zadeh, K., and Ou, J. Z., “Electrochromic Properties of TiO2 Nanotubes Coated with Electrodeposited MoO3,” Nanoscale, Vol. 5, No. 21, pp. 10353–10359, 2013.CrossRefGoogle Scholar
  16. 16.
    Liao, C.-C., “Lithium-Driven Electrochromic Properties of Electrodeposited Nickel Hydroxide Electrodes,” Solar Energy Materials and Solar Cells, Vol. 99, pp. 26–30, 2012.CrossRefGoogle Scholar
  17. 17.
    Sonavane, A., Inamdar, A., Shinde, P., Deshmukh, H., Patil, R., et al., “Efficient Electrochromic Nickel Oxide Thin Films by Electrodeposition,” Journal of Alloys and Compounds, Vol. 489, No. 2, pp. 667–673, 2010.CrossRefGoogle Scholar
  18. 18.
    Yuan, Y., Xia, X., Wu, J., Chen, Y., Yang, J., et al., “Enhanced Electrochromic Properties of Ordered Porous Nickel Oxide Thin Film Prepared by Self-Assembled Colloidal Crystal Template-Assisted Electrodeposition,” Electrochimica Acta, Vol. 56, No. 3, pp. 1208–1212, 2011.CrossRefGoogle Scholar
  19. 19.
    Zhao, L., Su, G., Liu, W., Cao, L., Wang, J., et al., “Optical and Electrochemical Properties of Cu-Doped NiO Films Prepared by Electrochemical Deposition,” Applied Surface Science, Vol. 257, No. 9, pp. 3974–3979, 2011.CrossRefGoogle Scholar
  20. 20.
    Dalavi, D. S., Suryavanshi, M. J., Mali, S. S., Patil, D. S., and Patil, P. S., “Efficient Maximization of Coloration by Modification in Morphology of Electrodeposited NiO Thin Films Prepared with Different Surfactants,” Journal of Solid State Electrochemistry, Vol. 16, No. 1, pp. 253–263, 2012.CrossRefGoogle Scholar
  21. 21.
    Su, G., Song, M., Sun, W., Cao, L., Liu, W., et al., “Electrodeposition in Organic System and Properties of NiO Electrochromic Films,” Science China Technological Sciences, Vol. 55, No. 6, pp. 1545–1550, 2012.CrossRefGoogle Scholar
  22. 22.
    Cai, G., Gu, C., Zhang, J., Liu, P., Wang, X., et al., “Ultra Fast Electrochromic Switching of Nanostructured NiO Films Electrodeposited from Choline Chloride-Based Ionic Liquid,” Electrochimica Acta, Vol. 87, pp. 341–347, 2013.CrossRefGoogle Scholar
  23. 23.
    Cai, G.-F., Tu, J.-P., Gu, C.-D., Zhang, J.-H., Chen, J., et al., “One-Step Fabrication of Nanostructured NiO Films from Deep Eutectic Solvent with Enhanced Electrochromic Performance,” Journal of Materials Chemistry A, Vol. 1, No. 13, pp. 4286–4292, 2013.CrossRefGoogle Scholar
  24. 24.
    Bodurov, G., Stefchev, P., Ivanova, T., and Gesheva, K., “Investigation of Electrodeposited NiO Films as Electrochromic Material for Counter Electrodes in “Smart Windows”,” Materials Letters, Vol. 117, pp. 270–272, 2014.CrossRefGoogle Scholar
  25. 25.
    Sonavane, A., Inamdar, A., Dalavi, D., Deshmukh, H., and Patil, P., “Simple and Rapid Synthesis of NiO/PPy Thin Films with Improved Electrochromic Performance,” Electrochimica Acta, Vol. 55, No. 7, pp. 2344–2351, 2010.CrossRefGoogle Scholar
  26. 26.
    Chen, W.-K., Hu, C.-W., Hsu, C.-Y., and Ho, K.-C., “A Study on the Electrochromic Properties of Polyaniline/Silica Composite Films with an Enhanced Optical Contrast,” Electrochimica Acta, Vol. 54, No. 18, pp. 4408–4415, 2009.CrossRefGoogle Scholar
  27. 27.
    Yang, P., Sun, P., Chai, Z., Huang, L., Cai, X., et al., “Large-Scale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage,” Angewandte Chemie International Edition, Vol. 53, No. 44, pp. 11935–11939, 2014.CrossRefGoogle Scholar
  28. 28.
    Mello, H. J. N. P. D. and Mulato, M., “Optochemical Sensors Using Electrodeposited Polyaniline Films: Electrical Bias Enhancement of Reflectance Response,” Sensors and Actuators B: Chemical, Vol. 213, pp. 195–201, 2015.CrossRefGoogle Scholar
  29. 29.
    Wang, S.-M., Liu, L., Chen, W.-L., and Wang, E.-B., “High Performance Visible and Near-Infrared Region Electrochromic Smart Windows Based on the Different Structures of Polyoxometalates,” Electrochimica Acta, Vol. 113, pp. 240–247, 2013.CrossRefGoogle Scholar
  30. 30.
    Kraft, A. and Rottmann, M., “Properties, Performance and Current Status of the Laminated Electrochromic Glass of Gesimat,” Solar Energy Materials and Solar Cells, Vol. 93, No. 12, pp. 2088–2092, 2009.CrossRefGoogle Scholar
  31. 31.
    Rong, Y., Kim, S., Su, F., Myers, D., and Taya, M., “New Effective Process to Fabricate Fast Switching and High Contrast Electrochromic Device Based on Viologen and Prussian Blue/Antimony Tin Oxide Nano-Composites with Dark Colored State,” Electrochimica Acta, Vol. 56, No. 17, pp. 6230–6236, 2011.CrossRefGoogle Scholar
  32. 32.
    Seelandt, B. and Wark, M., “Electrodeposited Prussian Blue in Mesoporous TiO2 as Electrochromic Hybrid Material,” Microporous and Mesoporous Materials, Vol. 164, pp. 67–70, 2012.CrossRefGoogle Scholar
  33. 33.
    Wang, M.-J., Li, C.-F., Lai, W.-J., and Yen, S.-K., “Characterization of TiO2 Thin Films Prepared by Electrolytic Deposition for Lithium Ion Battery Anodes,” Thin Solid Films, Vol. 520, No. 22, pp. 6744–6751, 2012.CrossRefGoogle Scholar
  34. 34.
    Kim, S., Taya, M., and Xu, C., “Contrast, Switching Speed, and Durability of V2O5-TiO2 Film-Based Electrochromic Windows,” Journal of the Electrochemical Society, Vol. 156, No. 2, pp. E40-E45, 2009.Google Scholar
  35. 35.
    Jin, A., Chen, W., Zhu, Q., and Jian, Z., “Multi-Electrochromism Behavior and Electrochromic Mechanism of Electrodeposited Molybdenum Doped Vanadium Pentoxide Films,” Electrochimica Acta, Vol. 55, No. 22, pp. 6408–6414, 2010.CrossRefGoogle Scholar
  36. 36.
    Wei, Y., Li, M., Zheng, J., and Xu, C., “Structural Characterization and Electrical and Optical Properties of V2O5 Films Prepared via Ultrasonic Spraying,” Thin Solid Films, Vol. 534, pp. 446–451, 2013.CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Jia, C., Wan, Z., Weng, X., Xie, J., et al., “Electrochemical and Electrochromic Properties of Novel Nanoporous NiO/V2O5 Hybrid Film,” Solar Energy Materials and Solar Cells, Vol. 132, pp. 467–475, 2015.CrossRefGoogle Scholar
  38. 38.
    Giannouli, M. and Leftheriotis, G., “The Effect of Precursor Aging on the Morphology and Electrochromic Performance of Electrodeposited Tungsten Oxide Films,” Solar Energy Materials and Solar Cells, Vol. 95, No. 7, pp. 1932–1939, 2011.CrossRefGoogle Scholar
  39. 39.
    Dinh, N. N., Ninh, D. H., Thao, T. T., and Vo-Van, T., “Mixed Nanostructured Ti-W Oxides Films for Efficient Electrochromic Windows,” Journal of Nanomaterials, Vol. 2012, Article No. 4, 2012.Google Scholar
  40. 40.
    Song, X. C., Wang, X., Zheng, Y. F., and Yin, H. Y., “Electrochromic Properties of WO3-MoO3 Nanocomposite Films Prepared by Electrodeposition Method,” Current Nanoscience, Vol. 9, No. 3, pp. 330–334, 2013.CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Tu, J., Cai, G., Du, G., Wang, X., et al., “Enhanced Electrochromic Performance of Highly Ordered, Macroporous WO3 Arrays Electrodeposited Using Polystyrene Colloidal Crystals as Template,” Electrochimica Acta, Vol. 99, pp. 1–8, 2013.CrossRefGoogle Scholar
  42. 42.
    Cai, G., Zhou, D., Xiong, Q., Zhang, J., Wang, X., et al., “Efficient Electrochromic Materials Based on TiO2@WO3 Core/Shell Nanorod Arrays,” Solar Energy Materials and Solar Cells, Vol. 117, pp. 231–238, 2013.CrossRefGoogle Scholar
  43. 43.
    Cheng, C.-P., Kuo, Y., Cheng, C.-H., and Zheng, Z.-W., “Operation Mechanism Investigation of Electrochromic Display Devices Using Tungsten Oxides Based on Solid-State Metal-Oxide-Metal Capacitor Structures,” Solid-State Electronics, Vol. 99, pp. 16–20, 2014.CrossRefGoogle Scholar
  44. 44.
    Evecan, D., Gurcuoglu, O., and Zayim, E. O., “Electrochromic Device Application of Tungsten Oxide Film with Polymer Electrolytes,” Microelectronic Engineering, Vol. 128, pp. 42–47, 2014.CrossRefGoogle Scholar
  45. 45.
    More, A., Patil, R., Dalavi, D., Mali, S., Hong, C., et al., “Electrodeposition of Nano-Granular Tungsten Oxide Thin Films for Smart Window Application,” Materials Letters, Vol. 134, pp. 298–301, 2014.CrossRefGoogle Scholar
  46. 46.
    Pang, Y., Chen, Q., Shen, X., Tang, L., and Qian, H., “Size-Controlled Ag Nanoparticle Modified WO3 Composite Films for Adjustment of Electrochromic Properties,” Thin Solid Films, Vol. 518, No. 8, pp. 1920–1924, 2010.CrossRefGoogle Scholar
  47. 47.
    Ling, H., Lu, J., Phua, S., Liu, H., Liu, L., et al., “One-Pot Sequential Electrochemical Deposition of Multilayer Poly (3, 4-Ethylenedioxythiophene): Poly (4-Styrenesulfonic Acid)/Tungsten Trioxide Hybrid Films and Their Enhanced Electrochromic Properties,” Journal of Materials Chemistry A, Vol. 2, No. 8, pp. 2708–2717, 2014.CrossRefGoogle Scholar
  48. 48.
    Dulgerbaki, C., Nohut, M. N., Komur, A. I., and Uygun, O. A., “PEDOT/WO3 Hybrid Nanofiber Architectures for High Performance Electrochromic Devices,” Electroanalysis, Vol. 28, No. 8, pp. 1873–1879, 2016.CrossRefGoogle Scholar
  49. 49.
    Najafi-Ashtiani, H., Bahari, A., and Ghasemi, S., “A Dual Electrochromic Film Based on Nanocomposite of Copolymer and WO3 Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Switching Response,” Journal of Electroanalytical Chemistry, Vol. 774, pp. 14–21, 2016.CrossRefGoogle Scholar
  50. 50.
    Gaikwad, D. K., Mali, S. S., Hong, C. K., and Kadam, A. V., “Influence of Disordered Morphology on Electrochromic Stability of WO3/PPy,” Journal of Alloys and Compounds, Vol. 669, pp. 240–245, 2016.CrossRefGoogle Scholar
  51. 51.
    Rayón, E., Cembrero, J., and Marí, B., “Electrochromic Switching of Electrodeposited ZnO + Zn5(OH)8Cl2 Films,” Materials Letters, Vol. 65, No. 23, pp. 3424–3426, 2011.CrossRefGoogle Scholar
  52. 52.
    Ma, L., Li, Y., Yu, X., Yang, Q., and Noh, C.-H., “Fabricating Red-Blue-Switching Dual Polymer Electrochromic Devices Using Room Temperature Ionic Liquid,” Solar Energy Materials and Solar Cells, Vol. 93, No. 5, pp. 564–570, 2009.CrossRefGoogle Scholar
  53. 53.
    Wei, H.-Y., Hsiao, Y.-S., Huang, J.-H., Hsu, C.-Y., Chang, F.-C., et al., “Dual-Color Electrochromic Films Incorporating a Periodic Polymer Nanostructure,” RSC Advances, Vol. 2, No. 11, pp. 4746–4753, 2012.CrossRefGoogle Scholar
  54. 54.
    Ramírez, C. L. and Parise, A. R., “Solvent Resistant Electrochromic Polymer Based on Methylene-Bridged Arylamines,” Organic Electronics, Vol. 10, No. 5, pp. 747–752, 2009.CrossRefGoogle Scholar
  55. 55.
    Granqvist, C. G., “Handbook of Inorganic Electrochromic Materials,” Elsevier, 1995.Google Scholar
  56. 56.
    Breaker, C. and Sherer, G., “The Physics and Chemistry of Sol-Gel Processing,” New York: Acad Press, 1990.Google Scholar
  57. 57.
    Aegerter, M. A., “Sol-Gel Chromogenic Materials and Devices,” Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application, pp. 149–194, 1996.CrossRefGoogle Scholar
  58. 58.
    Pierre, A. C., “Introduction to Sol-Gel Processing,” Springer Science & Business Media, 2013.Google Scholar
  59. 59.
    Egger, P., Sorarù, G. D., and Diré, S., “Sol-Gel Synthesis of Polymer-YSZ Hybrid Materials for SOFC Technology,” Journal of the European Ceramic Society, Vol. 24, No. 6, pp. 1371–1374, 2004.CrossRefGoogle Scholar
  60. 60.
    Gaudon, M., Laberty-Robert, C., Ansart, F., and Stevens, P., “Thick YSZ Films Prepared via a Modified Sol-Gel Route: Thickness Control (8-80μm),” Journal of the European Ceramic Society, Vol. 26, No. 15, pp. 3153–3160, 2006.CrossRefGoogle Scholar
  61. 61.
    Lenormand, P., Rieu, M., Julbe, A., Castillo, S., and Ansart, F., “Potentialities of the Sol-Gel Route to Develop Cathode and Electrolyte Thick Layers: Application to SOFC Systems,” Surface and Coatings Technology, Vol. 203, No. 5, pp. 901–904, 2008.CrossRefGoogle Scholar
  62. 62.
    Vo, N. X. P., Yoon, S. P., Nam, S. W., Han, J. H., Lim, T. H., et al., “Fabrication of an Anode-Supported SOFC with a Sol-Gel Coating Method for a Mixed-Gas Fuel Cell,” Key Engineering Materials, Vols. 277-279, pp. 455–461, 2005.CrossRefGoogle Scholar
  63. 63.
    Aparicio, M., Jitianu, A., and Klein, L. C., “Sol-Gel Processing for Conventional and Alternative Energy,” Springer Science & Business Media, 2012.CrossRefGoogle Scholar
  64. 64.
    Judeinstein, P., Livage, J., Zarudiansky, A., and Rose, R., “An “All Gel” Electrochromic Device,” Solid State Ionics, Vol. 28, pp. 1722–1725, 1988.CrossRefGoogle Scholar
  65. 65.
    Ozer, N., Tepehan, F., and Bozkurt, N., “An “All-Gel” Electrochromic Device,” Thin Solid Films, Vol. 219, No. 1, pp. 193–198, 1992.CrossRefGoogle Scholar
  66. 66.
    Macedo, M. A. and Aegerter, M. A., “Sol-Gel Electrochromic Device,” Journal of Sol-Gel Science and Technology, Vol. 2, No. 1–3, pp. 667–671, 1994.CrossRefGoogle Scholar
  67. 67.
    Avellaneda, C. O., Dahmouche, K., Bulhões, L. O., and Pawlicka, A., “Characterization of an All Sol-Gel Electrochromic Device WO3/Ormolyte/CeO2-TiO2,” Journal of Sol-Gel Science and Technology, Vol. 19, Nos. 1–3, pp. 447–451, 2000.CrossRefGoogle Scholar
  68. 68.
    Bell, J., Skryabin, I., and Koplick, A., “Large Area Electrochromic Films-Preparation and Performance,” Solar Energy Materials and Solar Cells, Vol. 68, No. 3, pp. 239–247, 2001.CrossRefGoogle Scholar
  69. 69.
    Leftheriotis, G., Papaefthimiou, S., and Yianoulis, P., “The Effect of Water on the Electrochromic Properties of WO3 Films Prepared by Vacuum and Chemical Methods,” Solar Energy Materials and Solar Cells, Vol. 83, No. 1, pp. 115–124, 2004.CrossRefGoogle Scholar
  70. 70.
    Šurca, A., Orel, B., Krašovec, U. O., Štangar, U. L., and Dražič, G., “Electrochromic and Structural Studies of Nanocrystalline Fe/V (1: 2) Oxide and Crystalline Fe2 V4 O13 Films,” Journal of the Electrochemical Society, Vol. 147, No. 6, pp. 2358–2370, 2000.CrossRefGoogle Scholar
  71. 71.
    Orel, B., Krašovec, U. O., Maček, M., Švegl, F., and Štangar, U. L., “Comparative Studies of “All Sol-Gel” Electrochromic Devices with Optically Passive Counter-Electrode Films, Ormolyte Li+ Ion-Conductor and WO3 or Nb2O5 Electrochromic Films,” Solar Energy Materials and Solar Cells, Vol. 56, No. 3, pp. 343–373, 1999.CrossRefGoogle Scholar
  72. 72.
    Livage, J. and Ganguli, D., “Sol-Gel Electrochromic Coatings and Devices: A Review,” Solar Energy Materials and Solar Cells, Vol. 68, No. 3, pp. 365–381, 2001.CrossRefGoogle Scholar
  73. 73.
    Bradley, D. C., Mehrotra, R. C., and Gaur, D., “Metal Alkoxides,” United Kingdom: Academic Press, 1978.Google Scholar
  74. 74.
    Pope, M., “Heteropoly and Isopoly Oxometalates (Inorganic Chemistry Concepts Vol. 8),” Springer Verlag, Berlin, 1983.CrossRefGoogle Scholar
  75. 75.
    Sakka, S., “Preparation and Properties of Sol-Gel Coating Films,” Journal of Sol-Gel Science and Technology, Vol. 2, Nos. 1–3, pp. 451–455, 1994.CrossRefGoogle Scholar
  76. 76.
    Yamamoto, Y., Kamiya, K., and Sakka, S., “Study on the Properties of Coating Films Prepared from Metal Alkoxides,” Yogyo Kyokaishi, Vol. 90, No. 6, pp. 328–333, 1982.CrossRefGoogle Scholar
  77. 77.
    Yamashita, H., Yoko, T., and Sakka, S., “Preparation of Li2B4O7 Films with Preferential Orientation by Sol-Gel Method,” Journal of the American Ceramic Society, Vol. 74, No. 7, pp. 1668–1674, 1991.CrossRefGoogle Scholar
  78. 78.
    Judeinstein, P., Titman, J., Stamm, M., and Schmidt, H., “Investigation of Ion-Conducting Ormolytes: Structure-Property Relationships,” Chemistry of Materials, Vol. 6, No. 2, pp. 127–134, 1994.CrossRefGoogle Scholar
  79. 79.
    Judeinstein, P. and Livage, J., “Sol-Gel Synthesis of WO3 Thin Films,” Journal of Materials Chemistry, Vol. 1, No. 4, pp. 621–627, 1991.CrossRefGoogle Scholar
  80. 80.
    Vroon, Z. and Spee, C., “Sol-Gel Coatings on Large Area Glass Sheets for Electrochromic Devices,” Journal of Non-Crystalline Solids, Vol. 218, pp. 189–195, 1997.CrossRefGoogle Scholar
  81. 81.
    Pyper, O., Schöllhorn, R., Donkers, J., and Krings, L., “Nanocrystalline Structure of WO3 Thin Films Prepared by the Sol-Gel Technique,” Materials Research Bulletin, Vol. 33, No. 7, pp. 1095–1101, 1998.CrossRefGoogle Scholar
  82. 82.
    Moser, F. H. and Lyman, N. R., “Method for Deposition of Electrochromic Layers,” US Patent No. 4855161, 1989.Google Scholar
  83. 83.
    Yan, Y., Li, G., Wang, F., and Mao, W., “Huadong Huagong Xueynan XueBao,” Shanghai: Huadong Li Gong Da Xue, 1992.Google Scholar
  84. 84.
    Mendez-Vivar, J., Campero, A., Livage, J., and Sanchez, C., “The Sol-Gel Route to Molybdenum Oxides,” Journal of Non-Crystalline Solids, Vol. 121, No. 1, pp. 26–30, 1990.CrossRefGoogle Scholar
  85. 85.
    Charbouillot, Y., Ravaine, D., Armand, M., and Poinsignon, C., “Aminosils: New Solid State Protonic Materials by the Sol-Gel Process,” Journal of Non-Crystalline Solids, Vol. 103, Nos. 2–3, pp. 325–330, 1988.CrossRefGoogle Scholar
  86. 86.
    Tepehan, F. Z., Ghodsi, F. E., Ozer, N., and Tepehan, G. G., “Optical Properties of Sol-Gel Dip-Coated Ta2O5 Films for Electrochromic Applications,” Solar Energy Materials and Solar Cells, Vol. 59, No. 3, pp. 265–275, 1999.CrossRefGoogle Scholar
  87. 87.
    Kamimori, T., Nagai, J., and Mizuhashi, M., “Electrochromic Devices for Transmissive and Reflective Light Control,” Solar Energy Materials, Vol. 16, No. 1, pp. 27–38, 1987.CrossRefGoogle Scholar
  88. 88.
    Orel, B., Krašovec, U. O., Štangar, U. L., and Judeinstein, P., “All Sol-Gel Electrochromic Devices with Li+ Ionic Conductor, WO3 Electrochromic Films and SnO2 Counter-Electrode Films,” Journal of Sol-Gel Science and Technology, Vol. 11, No. 1, pp. 87–104, 1998.CrossRefGoogle Scholar
  89. 89.
    Patil, C., Tarwal, N., Shinde, P., Deshmukh, H., and Patil, P., “Synthesis of Electrochromic Vanadium Oxide by Pulsed Spray Pyrolysis Technique and Its Properties,” Journal of physics D: Applied physics, Vol. 42, No. 2, Paper No. 025404, 2008.Google Scholar
  90. 90.
    Patil, C., Tarwal, N., Jadhav, P., Shinde, P., Deshmukh, H., et al., “Electrochromic Performance of the Mixed V2O5-WO3 Thin Films Synthesized By Pulsed Spray Pyrolysis Technique,” Current Applied Physics, Vol. 14, No. 3, pp. 389–395, 2014.CrossRefGoogle Scholar
  91. 91.
    Mujawar, S., Inamdar, A., Betty, C., Korošec, R. C., and Patil, P., “Electrochromism in Composite WO3-Nb2O5 Thin Films Synthesized by Spray Pyrolysis Technique,” Journal of Applied Electrochemistry, Vol. 41, No. 4, pp. 397–403, 2011.CrossRefGoogle Scholar
  92. 92.
    Bhosale, A., Shinde, P., Tarwal, N., Pawar, R., Kadam, P., et al., “Synthesis and Characterization of Highly Stable Optically Passive CeO2-ZrO2 Counter Electrode,” Electrochimica Acta, Vol. 55, No. 6, pp. 1900–1906, 2010.CrossRefGoogle Scholar
  93. 93.
    Bertus, L., Enesca, A., and Duta, A., “Influence of Spray Pyrolysis Deposition Parameters on the Optoelectronic Properties of WO3 Thin Films,” Thin Solid Films, Vol. 520, No. 13, pp. 4282–4290, 2012.CrossRefGoogle Scholar
  94. 94.
    Mousavi, M., Kompany, A., Shahtahmasebi, N., and Bagheri-Mohagheghi, M., “The Effect of Solution Concentration on the Physical and Electrochemical Properties of Vanadium Oxide Films Deposited by Spray Pyrolysis,” Journal of Semiconductors, Vol. 34, No. 10, Paper No. 103001, 2013.Google Scholar
  95. 95.
    Denayer, J., Bister, G., Simonis, P., Colson, P., Maho, A., et al., “Surfactant-Assisted Ultrasonic Spray Pyrolysis of Nickel Oxide and Lithium-Doped Nickel Oxide Thin Films, toward Electrochromic Applications,” Applied Surface Science, Vol. 321, pp. 61–69, 2014.CrossRefGoogle Scholar
  96. 96.
    Mahajan, S., Mujawar, S., Shinde, P., Inamdar, A., and Patil, P., “Structural, Morphological, Optical and Electrochromic Properties of Ti-Doped MoO3 Thin Films,” Solar Energy Materials and Solar Cells, Vol. 93, No. 2, pp. 183–187, 2009.CrossRefGoogle Scholar
  97. 97.
    Mukherjee, R. and Sahay, P., “Improved Electrochromic Performance in Sprayed WO3 Thin Films upon Sb Doping,” Journal of Alloys and Compounds, Vol. 660, pp. 336–341, 2016.CrossRefGoogle Scholar
  98. 98.
    Desai, J., Min, S.-K., Jung, K.-D., and Joo, O.-S., “Spray Pyrolytic Synthesis of Large Area NiOx Thin Films from Aqueous Nickel Acetate Solutions,” Applied Surface Science, Vol. 253, No. 4, pp. 1781–1786, 2006.CrossRefGoogle Scholar
  99. 99.
    Kholmanov, I. N., Magnuson, C. W., Aliev, A. E., Li, H., Zhang, B., et al., “Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires,” Nano Letters, Vol. 12, No. 11, pp. 5679–5683, 2012.CrossRefGoogle Scholar
  100. 100.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., et al., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, Vol. 324, No. 5932, pp. 1312–1314, 2009.CrossRefGoogle Scholar
  101. 101.
    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., et al., “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, Vol. 5, No. 8, pp. 574–578, 2010.CrossRefGoogle Scholar
  102. 102.
    White, C. M., Gillaspie, D. T., Whitney, E., Lee, S.-H., and Dillon, A. C., “Flexible Electrochromic Devices Based on Crystalline WO3 Nanostructures Produced with Hot-Wire Chemical Vapor Deposition,” Thin Solid Films, Vol. 517, No. 12, pp. 3596–3599, 2009.CrossRefGoogle Scholar
  103. 103.
    Mahan, A., Parilla, P., Jones, K., and Dillon, A., “Hot-Wire Chemical Vapor Deposition of Crystalline Tungsten Oxide Nanoparticles at High Density,” Chemical Physics Letters, Vol. 413, No. 1, pp. 88–94, 2005.CrossRefGoogle Scholar
  104. 104.
    Li, C.-P., Wolden, C. A., Dillon, A. C., and Tenent, R. C., “Electrochromic Films Produced by Ultrasonic Spray Deposition of Tungsten Oxide Nanoparticles,” Solar Energy Materials and Solar Cells, Vol. 99, pp. 50–55, 2012.CrossRefGoogle Scholar
  105. 105.
    Lee, S. H., Deshpande, R., Parilla, P. A., Jones, K. M., To, B., et al., “Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications,” Advanced Materials, Vol. 18, No. 6, pp. 763–766, 2006.CrossRefGoogle Scholar
  106. 106.
    Lin, Y.-S., Chen, H.-T., and Lai, J.-Y., “Electrochromic Performance of Pecvd-Synthesized WOxCy Thin Films on Flexible PET/ITO Substrates for Flexible Electrochromic Devices,” Thin Solid Films, Vol. 518, No. 5, pp. 1377–1381, 2009.CrossRefGoogle Scholar
  107. 107.
    Lin, Y.-S., Chiang, Y.-L., and Lai, J.-Y., “Effects of Oxygen Addition to the Electrochromic Properties of WO3-z Thin Films Sputtered on Flexible PET/ITO Substrates,” Solid State Ionics, Vol. 180, No. 1, pp. 99–105, 2009.CrossRefGoogle Scholar
  108. 108.
    Hou, X. and Choy, K. L., “Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition,” Chemical Vapor Deposition, Vol. 12, No. 10, pp. 583–596, 2006.CrossRefGoogle Scholar
  109. 109.
    Choy, K., “Chemical Vapour Deposition of Coatings,” Progress in Materials Science, Vol. 48, No. 2, pp. 57–170, 2003.CrossRefGoogle Scholar
  110. 110.
    Tahir, A. A., Ehsan, M. A., Mazhar, M., Wijayantha, K. U., Zeller, M., et al., “Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films,” Chemistry of Materials, Vol. 22, No. 17, pp. 5084–5092, 2010.CrossRefGoogle Scholar
  111. 111.
    Dharmadasa, R., Tahir, A. A., and Wijayantha, K., “Single Step Growth and Characterization of Zinc Oxide, Tin Oxide, and Composite (ZnxSn1-xOy) Nanoplate and Nanocolumn Electrodes,” Journal of the American Ceramic Society, Vol. 94, No. 10, pp. 3540–3546, 2011.CrossRefGoogle Scholar
  112. 112.
    Tahir, A. A. and Wijayantha, K. U., “Photoelectrochemical Water Splitting at Nanostructured ZnFe2O4 Electrodes,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 216, No. 2, pp. 119–125, 2010.CrossRefGoogle Scholar
  113. 113.
    Bloor, L. G., Manzi, J., Binions, R., Parkin, I. P., Pugh, D., et al., “Tantalum and Titanium Doped In2O3 Thin Films by Aerosol-Assisted Chemical Vapor Deposition and Their Gas Sensing Properties,” Chemistry of Materials, Vol. 24, No. 15, pp. 2864–2871, 2012.CrossRefGoogle Scholar
  114. 114.
    Sialvi, M. Z., Mortimer, R. J., Wilcox, G. D., Teridi, A. M., Varley, T. S., et al., “Electrochromic and Colorimetric Properties of Nickel (II) Oxide Thin Films Prepared by Aerosol-Assisted Chemical Vapor Deposition,” ACS Applied Materials & Interfaces, Vol. 5, No. 12, pp. 5675–5682, 2013.CrossRefGoogle Scholar
  115. 115.
    Trunec, D., Zajíčková, L., Buršíková, V., Studnička, F., Sťahel, P., et al., “Deposition of Hard Thin Films from HMDSO in Atmospheric Pressure Dielectric Barrier Discharge,” Journal of Physics D: Applied Physics, Vol. 43, No. 22, Paper No. 225403, 2010.Google Scholar
  116. 116.
    Lommatzsch, U. and Ihde, J., “Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low-Adhesion Surfaces,” Plasma Processes and Polymers, Vol. 6, No. 10, pp. 642–648, 2009.CrossRefGoogle Scholar
  117. 117.
    Kakiuchi, H., Nakahama, Y., Ohmi, H., Yasutake, K., Yoshii, K., et al., “Investigation of Deposition Characteristics and Properties of High-Rate Deposited Silicon Nitride Films Prepared by Atmospheric Pressure Plasma Chemical Vapor Deposition,” Thin Solid Films, Vol. 479, No. 1, pp. 17–23, 2005.CrossRefGoogle Scholar
  118. 118.
    Hodgkinson, J. L., Yates, H. M., and Sheel, D. W., “Low Temperature Growth of Photoactive Titania by Atmospheric Pressure Plasma,” Plasma Processes and Polymers, Vol. 6, No. 9, pp. 575–582, 2009.CrossRefGoogle Scholar
  119. 119.
    Sheel, D. W. and Hodgkinson, J. L., “Atmospheric?Pressure Glow Discharge CVD of Composite Metallic Aluminium Thin Films,” Plasma Processes and Polymers, Vol. 4, No. 5, pp. 537–547, 2007.CrossRefGoogle Scholar
  120. 120.
    Hodgkinson, J. L., Sheel, D. W., Yates, H. M., and Pemble, M. E., “Atmospheric Pressure Glow Discharge CVD of Al2O3 Thin Films,” Plasma Processes and Polymers, Vol. 3, No. 8, pp. 597–605, 2006.CrossRefGoogle Scholar
  121. 121.
    Barankin, M., Gonzalez Ii, E., Ladwig, A., and Hicks, R., “Plasma-Enhanced Chemical Vapor Deposition of Zinc Oxide at Atmospheric Pressure and Low Temperature,” Solar Energy Materials and Solar Cells, Vol. 91, No. 10, pp. 924–930, 2007.CrossRefGoogle Scholar
  122. 122.
    Korotkov, R., Gupta, R., Ricou, P., Smith, R., and Silverman, G., “Atmospheric Plasma Discharge Chemical Vapor Deposition of SnOx Thin Films Using Various Tin Precursors,” Thin Solid Films, Vol. 516, No. 15, pp. 4720–4727, 2008.CrossRefGoogle Scholar
  123. 123.
    Čada, M., Churpita, O., Hubička, Z., Ší, H., and Jastrabí, L., “Investigation of the Low Temperature Atmospheric Deposition of TCO Thin Films on Polymer Substrates,” Surface and Coatings Technology, Vol. 177, pp. 699–704, 2004.CrossRefGoogle Scholar
  124. 124.
    Suzuki, T. and Kodama, H., “Diamond-Like Carbon Films Synthesized Under Atmospheric Pressure Synthesized on PET Substrates,” Diamond and Related Materials, Vol. 18, No. 5, pp. 990–994, 2009.CrossRefGoogle Scholar
  125. 125.
    Fanelli, F., D’Agostino, R., and Fracassi, F., “Atmospheric Pressure PE-CVD of Fluorocarbon Thin Films by Means of Glow Dielectric Barrier Discharges,” Plasma Processes and Polymers, Vol. 4, No. 9, pp. 797–805, 2007.CrossRefGoogle Scholar
  126. 126.
    Merche, D., Poleunis, C., Bertrand, P., Sferrazza, M., and Reniers, F., “Synthesis of Polystyrene Thin Films by Means of an Atmospheric-Pressure Plasma Torch and a Dielectric Barrier Discharge,” IEEE Transactions onPlasma Science, Vol. 37, No. 6, pp. 951–960, 2009.CrossRefGoogle Scholar
  127. 127.
    Lin, Y. S., Wu, S. S., and Tsai, T. H., “High-Rate Deposition of Electrochromic Organotungsten Oxide Thin Films for Flexible Electrochromic Devices by Atmospheric Pressure Plasma Jet: The Effect of Substrate Distance,” Plasma Processes and Polymers, Vol. 8, No. 8, pp. 728–739, 2011.CrossRefGoogle Scholar
  128. 128.
    Lin, Y.-S., Lin, D.-J., Chiu, L.-Y., and Lin, S.-W., “Lithium Electrochromism of Atmospheric Pressure Plasma Jet-Synthesized NiOxCy Thin Films,” Journal of Solid State Electrochemistry, Vol. 16, No. 8, pp. 2581–2590, 2012.CrossRefGoogle Scholar
  129. 129.
    Lin, Y.-S., Tsai, T.-H., Hung, S.-C., and Tien, S.-W., “Enhanced Lithium Electrochromismof Atmospheric Pressure Plasma Jet-Synthesized Tungsten/Molybdenum Oxide Films for Flexible Electrochromic Devices,” Journal of Solid State Electrochemistry, Vol. 17, No. 4, pp. 1077–1088, 2013.CrossRefGoogle Scholar
  130. 130.
    Lin, Y.-S., Tsai, T.-H., and Lu, W.-H., “Lithium Electrochemical and Electrochromic Properties of Atmospheric Pressure Plasma Jet-Synthesized Tungsten/Molybdenum Mixed Oxide Films for Flexible Electrochromic Devices,” IEEE Transactions on Plasma Science, Vol. 42, No. 12, pp. 3772–3785, 2014.CrossRefGoogle Scholar
  131. 131.
    Lin, Y.-S. Chen, Y.-C., and Tien, S.-W., “Effects of Oxygen Addition on Enhancing Electrochromic Performance of Flexible Tungsten/Tantalum Oxide Films Using an Atmospheric Pressure Plasma Jet,” Surface and Coatings Technology, Vol. 221, pp. 173–181, 2013.CrossRefGoogle Scholar
  132. 132.
    Khalifa, Z., Lin, H., and Shah, S. I., “Structural and Electrochromic Properties of TiO2 Thin Films Prepared by Metallorganic Chemical Vapor Deposition,” Thin Solid Films, Vol. 518, No. 19, pp. 5457–5462, 2010.CrossRefGoogle Scholar
  133. 133.
    Jahan, B. M., Mokhtari, J., Nouri, M., and Sarabi, A. A., “Chemical Vapor Deposition of Poly (3-Alkylthiophene) Nanoparticles on Fabric: Chemical and Electrochemical Characterization,” Journal of Applied Polymer Science, Vol. 131, No. 17, DOI No. 10. 1002/app.40673, 2014.Google Scholar
  134. 134.
    Nejati, S. and Lau, K. K., “Chemical Vapor Deposition Synthesis of Tunable Unsubstituted Polythiophene,” Langmuir, Vol. 27, No. 24, pp. 15223–15229, 2011.CrossRefGoogle Scholar
  135. 135.
    Chelawat, H., Vaddiraju, S., and Gleason, K., “Conformal, Conducting Poly (3, 4-Ethylenedioxythiophene) Thin Films Deposited Using Bromine as the Oxidant in a Completely Dry Oxidative Chemical Vapor Deposition Process,” Chemistry of Materials, Vol. 22, No. 9, pp. 2864–2868, 2010.CrossRefGoogle Scholar
  136. 136.
    Im, S. G., Yoo, P. J., Hammond, P. T., and Gleason, K. K., “Grafted Conducting Polymer Films for Nano-Patterning Onto Various Organic and Inorganic Substrates by Oxidative Chemical Vapor Deposition,” Advanced Materials, Vol. 19, No. 19, pp. 2863–2867, 2007.CrossRefGoogle Scholar
  137. 137.
    Bhattacharyya, D. and Gleason, K. K., “Single-Step Oxidative Chemical Vapor Deposition of- COOH Functional Conducting Copolymer and Immobilization of Biomolecule for Sensor Application,” Chemistry of Materials, Vol. 23, No. 10, pp. 2600–2605, 2011.CrossRefGoogle Scholar
  138. 138.
    Pereira, S., Gonçalves, A., Correia, N., Pinto, J., Pereira, L., et al., “Electrochromic Behavior of NiO Thin Films Deposited by E-Beam Evaporation at Room Temperature,” Solar Energy Materials and Solar Cells, Vol. 120, pp. 109–115, 2014.CrossRefGoogle Scholar
  139. 139.
    Sivakumar, R., Shanthakumari, K., Thayumanavan, A., Jayachandran, M., and Sanjeeviraja, C., “Molybdenum Oxide (MoO3) Thin Film based Electrochromic Cell Characterisation in 0·1M LiClO4.PC Electrolyte,” Surface Engineering, Vol. 25, pp. 548–554, 2009.CrossRefGoogle Scholar
  140. 140.
    Wang, C.-M., Wen, C.-Y., Chen, Y.-C., Kao, K.-S., Cheng, D.-L., et al., “Effect of Deposition Temperature on the Electrochromic Properties of Electron Beam-Evaporated WO3 Thin Films,” Integrated Ferroelectrics, Vol. 158, No. 1, pp. 62–68, 2014.CrossRefGoogle Scholar
  141. 141.
    Chiu, P.-K., Chiang, D., Lee, C.-T., Hsiao, C.-N., Yang, J.-R., et al., “Investigation of the Microstructure, Porosity, Adhesion, and Optical Properties of a WO3 Film Fabricated Using an E-Beam System with Ion Beam-Assisted Deposition,” IEEE Transactions on Magnetics, Vol. 50, No. 7, pp. 1–4, 2014.CrossRefGoogle Scholar
  142. 142.
    Kubo, T., Nishikitani, Y., Sawai, Y., Iwanaga, H., Sato, Y., et al., “Electrochromic Properties of LixNiy O Films Deposited by RF Magnetron Sputtering,” Journal of the Electrochemical Society, Vol. 156, No. 8, pp. H629–H633, 2009.CrossRefGoogle Scholar
  143. 143.
    Tajima, K., Yamada, Y., Okada, M., and Yoshimura, K., “Accelerated Degradation Studies on Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Simulated Environment,” Solar Energy Materials and Solar Cells, Vol. 94, No. 10, pp. 1716–1722, 2010.CrossRefGoogle Scholar
  144. 144.
    Tajima, K., Yamada, Y., Okada, M., and Yoshimura, K., “Fabrication Study of Proton Injection Layer Suitable for Electrochromic Switchable Mirror Glass,” Thin Solid Films, Vol. 519, No. 2, pp. 934–937, 2010.CrossRefGoogle Scholar
  145. 145.
    Tajima, K., Hotta, H., Yamada, Y., Okada, M., and Yoshimura, K., “Fabrication of Solid Electrolyte Ta2O5 Thin Film by Reactive DC Magnetron Sputtering Suitable for Electrochromic All-Solid-State Switchable Mirror Glass,” Journal of the Ceramic Society of Japan, Vol. 119, No. 1385, pp. 76–80, 2011.CrossRefGoogle Scholar
  146. 146.
    Chu, C.-H., Wu, H.-W., and Huang, J.-L., “Novel WO3-Based Electrochromic Device for High Optical Modulation and Infrared Suppression,” IEEE Electron Device Letters, Vol. 36, No. 3, pp. 256–258, 2015.CrossRefGoogle Scholar
  147. 147.
    Wang, C.-K., Lin, C.-K., Wu, C.-L., Brahma, S., Wang, S.-C., et al., “Characterization of Electrochromic Tungsten Oxide Film from Electrochemical Anodized RF-Sputtered Tungsten Films,” Ceramics International, Vol. 39, No. 4, pp. 4293–4298, 2013.CrossRefGoogle Scholar
  148. 148.
    Gomes, L., Marques, A., Branco, A., Araújo, J., Simões, M., et al., “IZO Deposition by Rf and Dc Sputtering on Paper and Application on Flexible Electrochromic Devices,” Displays, Vol. 34, No. 4, pp. 326–333, 2013.CrossRefGoogle Scholar
  149. 149.
    Park, Y., Lee, S., Yi, J., Choi, B.-D., Kim, D., et al., “Sputtered CdTe Thin Film Solar Cells with Cu2Te/Au Back Contact,” Thin Solid Films, Vol. 546, pp. 337–341, 2013.CrossRefGoogle Scholar
  150. 150.
    Lim, J. W., Yoo, S. J., Park, S. H., Yun, S. U., and Sung, Y.-E., “High Electrochromic Performance of Co-Sputtered Vanadium-Titanium Oxide as a Counter Electrode,” Solar Energy Materials and Solar Cells, Vol. 93, No. 12, pp. 2069–2074, 2009.CrossRefGoogle Scholar
  151. 151.
    Noguchi, D., Fukudome, S., Shimoniihara, M., Kawano, Y., and Sei, F., “Formation of WO3 Reduction Coloring Thin Film Using a Combination Sputtering Method Featuring Radio-Frequency Oxygen Plasma Irradiation,” Journal of the Vacuum Society of Japan, Vol. 54, No. 5, pp. 317–321, 2011.CrossRefGoogle Scholar
  152. 152.
    Nah, Y.-C., “Effects of Sputter Parameters on Electrochromic Properties of Tungsten Oxide Thin Films Grown by RF Sputtering,” Korean Journal of Materials Research, Vol. 21, No. 12, pp. 703–707, 2011.CrossRefGoogle Scholar
  153. 153.
    Inamdar, A. I., Kim, Y., Jang, B., Im, H., Jung, W., et al., “Effects of Oxygen Stoichiometry on Electrochromic Properties in Amorphous Tungsten Oxide Films,” Thin Solid Films, Vol. 520, No. 16, pp. 5367–5371, 2012.CrossRefGoogle Scholar
  154. 154.
    Kalagi, S., Mali, S., Dalavi, D., Inamdar, A., Im, H., et al., “Transmission Attenuation and Chromic Contrast Characterization of RF Sputtered WO3 Thin Films for Electrochromic Device Applications,” Electrochimica Acta, Vol. 85, pp. 501–508, 2012.CrossRefGoogle Scholar
  155. 155.
    Oka, N., Watanabe, M., Sugie, K., Iwabuchi, Y., Kotsubo, H., et al., “Reactive-Gas-Flow Sputter Deposition of Amorphous WO3 Films for Electrochromic Devices,” Thin Solid Films, Vol. 532, pp. 1–6, 2013.CrossRefGoogle Scholar
  156. 156.
    Madhavi, V., Kumar, P. J., Kondaiah, P., Hussain, O., and Uthanna, S., “Effect of Molybdenum Doping on the Electrochromic Properties of Tungsten Oxide Thin Films by RF Magnetron Sputtering,” Ionics, Vol. 20, No. 12, pp. 1737–1745, 2014.CrossRefGoogle Scholar
  157. 157.
    Wen, R.-T., Niklasson, G. A., and Granqvist, C. G., “Electrochromic Nickel Oxide Films and Their Compatibility with Potassium Hydroxide and Lithium Perchlorate in Propylene Carbonate: Optical, Electrochemical and Stress-Related Properties,” Thin Solid Films, Vol. 565, pp. 128–135, 2014.CrossRefGoogle Scholar
  158. 158.
    Kang, S. H., Lim, J.-W., Kim, H. S., Kim, J.-Y., Chung, Y.-H., and Sung, Y.-E., “Photo and Electrochemical Characteristics Dependent on the Phase Ratio of Nanocolumnar Structured TiO2 Films by RF Magnetron Sputtering Technique,” Chemistry of Materials, Vol. 21, No. 13, pp. 2777–2788, 2009.CrossRefGoogle Scholar
  159. 159.
    Lansåker, P., Backholm, J., Niklasson, G., and Granqvist, C.-G., “TiO2/Au/TiO2 Multilayer Thin Films: Novel Metal-based Transparent Conductors for Electrochromic Devices,” Thin Solid Films, Vol. 518, No. 4, pp. 1225–1229, 2009.CrossRefGoogle Scholar
  160. 160.
    Gillaspie, D., Norman, A., Tracy, C. E., Pitts, J. R., Lee, S.-H., et al., “Nanocomposite Counter Electrode Materials for Electrochromic Windows,” Journal of the Electrochemical Society, Vol. 157, No. 3, pp. H328–H331, 2010.CrossRefGoogle Scholar
  161. 161.
    Green, S., Granqvist, C.-G., and Niklasson, G., “Structure and Optical Properties of Electrochromic Tungsten-Containing Nickel Oxide Films,” Solar Energy Materials and Solar Cells, Vol. 126, pp. 248–259, 2014.CrossRefGoogle Scholar
  162. 162.
    Rodrigues, L., Barbosa, P., Silva, M., Smith, M., Gonçalves, A., et al., “Application of Hybrid Materials in Solid-State Electrochromic Devices,” Optical Materials, Vol. 31, No. 10, pp. 1467–1471, 2009.CrossRefGoogle Scholar
  163. 163.
    Jee, S. H., Kakati, N., Lee, S. H., Ahn, H. S., Kim, D.-J., et al., “Characteristics of Li-P-W-O-N Electrolyte for All Solid State Electrochromic Devices,” Electrochimica Acta, Vol. 56, No. 27, pp. 9741–9745, 2011.CrossRefGoogle Scholar
  164. 164.
    Chen, H., Tao, H., Zhao, X., and Wu, Q., “Fabrication and Ionic Conductivity of Amorphous Li-Al-Ti-P-O Thin Film,” Journal of Non-Crystalline Solids, Vol. 357, No. 16, pp. 3267–3271, 2011.CrossRefGoogle Scholar
  165. 165.
    Tajima, K., Yamada, Y., Bao, S., Okada, M., and Yoshimura, K., “Optical Switching Properties of All-Solid-State Switchable Mirror Glass Based on Magnesium-Nickel Thin Film for Environmental Temperature,” Solar Energy Materials and Solar Cells, Vol. 94, No. 2, pp. 227–231, 2010.CrossRefGoogle Scholar
  166. 166.
    Ito, S., Abe, Y., Kawamura, M., and Kim, K. H., “Electrochromic Properties of Iridium Oxide Thin Films Prepared by Reactive Sputtering in O2 or H2O Atmosphere,” Journal of Vacuum Science and Technology B, Vol. 33, No. 4, Paper No. 041204, 2015.Google Scholar
  167. 167.
    Usha, N., Sivakumar, R., Sanjeeviraja, C., and Kuroki, Y., “Effect of Substrate Temperature on the Properties of Nb2O5:MoO3 (90:10) Thin Films Prepared by RF Magnetron Sputtering Technique,” Journal of Alloys and Compounds, Vol. 649, pp. 112–121, 2015.CrossRefGoogle Scholar
  168. 168.
    Coşkun, Ö. D., Demirel, S., and Atak, G., “The Effects of Heat Treatment on Optical, Structural, Electrochromic and Bonding Properties of Nb2O5 Thin Films,” Journal of Alloys and Compounds, Vol. 648, pp. 994–1004, 2015.CrossRefGoogle Scholar
  169. 169.
    Kelly, P. and Bradley, J., “Pulsed Magnetron Sputtering-Process Overview and Applications,” Journal of Optoelectronics and Advanced Materials, Vol. 11, No. 9, pp. 1101–1107, 2009.Google Scholar
  170. 170.
    Chen, H.-C., Jan, D.-J., and Chen, C.-H., “Investigation of Optical and Electrochromic Properties of Tungsten Oxide Deposited with Horizontal DC and DC Pulse Magnetron Sputtering,” Japanese Journal of Applied Physics, Vol. 51, No. 4R, Paper No. 045503, 2012.Google Scholar
  171. 171.
    Chen, H.-C., Jan, D.-J., Chen, C.-H., and Huang, K.-T., “Bond and Electrochromic Properties of WO3 Films Deposited with Horizontal DC, Pulsed DC, and RF Sputtering,” Electrochimica Acta, Vol. 93, pp. 307–313, 2013.CrossRefGoogle Scholar
  172. 172.
    Gil-Rostra, J., García-García, F., Yubero, F., and González-Elipe, A. R., “Tuning the Transmittance and the Electrochromic Behavior of CoxSiyOz Thin Films Prepared by Magnetron Sputtering at Glancing Angle,” Solar Energy Materials and Solar Cells, Vol. 123, pp. 130–138, 2014.CrossRefGoogle Scholar
  173. 173.
    Valyukh, I., Green, S., Arwin, H., Niklasson, G. A., Wäckelgård, E., et al., “Spectroscopic Ellipsometry Characterization of Electrochromic Tungsten Oxide and Nickel Oxide Thin Films Made by Sputter Deposition,” Solar Energy Materials and Solar Cells, Vol. 94, No. 5, pp. 724–732, 2010.CrossRefGoogle Scholar
  174. 174.
    Sun, X., Liu, Z., and Cao, H., “Electrochromic Properties of N-Doped Tungsten Oxide Thin Films Prepared by Reactive DC-Pulsed Sputtering,” Thin Solid Films, Vol. 519, No. 10, pp. 3032–3036, 2011.CrossRefGoogle Scholar
  175. 175.
    Tajima, K., Hotta, H., Yamada, Y., Okada, M., and Yoshimura, K., “Electrochromic Switchable Mirror Foil with Tantalum Oxide Thin Film Prepared by Reactive DC Magnetron Sputtering in Hydrogen-Containing Gas,” Surface and Coatings Technology, Vol. 205, No. 15, pp. 3956–3960, 2011.CrossRefGoogle Scholar
  176. 176.
    Karuppasamy, A., “Electrochromism in Surface Modified Crystalline WO3 Thin Films Grown by Reactive DC Magnetron Sputtering,” Applied Surface Science, Vol. 282, pp. 77–83, 2013.CrossRefGoogle Scholar
  177. 177.
    Arvizu, M. A., Triana, C. A., Stefanov, B. I., Granqvist, C.-G., and Niklasson, G. A., “Electrochromism in Sputter-Deposited W-Ti Oxide Films: Durability Enhancement due to Ti,” Solar Energy Materials and Solar Cells, Vol. 125, pp. 184–189, 2014.CrossRefGoogle Scholar
  178. 178.
    García-García, F. J., Gil-Rostra, J., Yubero, F., Espinós, J., Gonzalez-Elipe, A. R., et al., “‘In Operando’ X-Ray Absorption Spectroscopy Analysis of Structural Changes during Electrochemical Cycling of WO3 and WxSiyOz Amorphous Electrochromic Thin Film Cathodes,” The Journal of Physical Chemistry C, Vol. 119, No. 1, pp. 644–652, 2014.CrossRefGoogle Scholar
  179. 179.
    Kumar, K. U., Murali, D. S., and Subrahmanyam, A., “Flexible Electrochromics: Magnetron Sputtered Tungsten Oxide (WO3-x) Thin Films on Lexan (Optically Transparent Polycarbonate) Substrates,” Journal of Physics D: Applied Physics, Vol. 48, No. 25, Paper No. 255101, 2015.Google Scholar
  180. 180.
    Li, C., Hsieh, J., Hung, M.-T., and Huang, B., “The Deposition and Microstructure of Amorphous Tungsten Oxide Films by Sputtering,” Vacuum, Vol. 118, pp. 125–132, 2015.CrossRefGoogle Scholar
  181. 181.
    Tajima, K., Yamada, Y., Bao, S., Okada, M., and Yoshimura, K., “Electrochemical Evaluation of Ta2O5 Thin Film for All-Solid-State Switchable Mirror Glass,” Solid State Ionics, Vol. 180, No. 6, pp. 654–658, 2009.CrossRefGoogle Scholar
  182. 182.
    Madhavi, V., Kondaiah, P., Hussain, O., and Uthanna, S., “Structural, Optical and Electrochromic Properties of RF Magnetron Sputtered WO3 Thin Films,” Physica B: Condensed Matter, Vol. 454, pp. 141–147, 2014.CrossRefGoogle Scholar
  183. 183.
    Avendano, E., Rensmo, H., Azens, A., Sandell, A., Azevedo, G. D. M., et al., “Coloration Mechanism in Proton-Intercalated Electrochromic Hydrated NiOy and Ni1-xVxOy Thin Films,” Journal of the Electrochemical Society, Vol. 156, No. 8, pp. P132–P138, 2009.CrossRefGoogle Scholar
  184. 184.
    Wang, T., Diao, X., and Ding, P., “Orthogonal Optimization for Room Temperature Magnetron Sputtering of ZnO:Al films for All-Solid Electrochromic Devices,” Applied Surface Science, Vol. 257, No. 8, pp. 3748–3752, 2011.CrossRefGoogle Scholar
  185. 185.
    Song, X., Dong, G., Gao, F., Xiao, Y., Liu, Q., et al., “Properties of NiOx and Its Influence Upon All-Thin-Film ITO/NiOx/LiTaO3/WO3/ITO Electrochromic Devices Prepared by Magnetron Sputtering,” Vacuum, Vol. 111, pp. 48–54, 2015.CrossRefGoogle Scholar
  186. 186.
    Choi, D. S., Han, S. H., Kim, H., Kim, T. Y., Rhyu, S. H., et al., “Electrochromic Characterization of Amorphous Tungsten Oxide Films Deposited on Indium Tin Oxide and CVD-Graphene Electrodes by RF Magnetron Sputtering,” Journal of Ceramic Processing Research, Vol. 15, No. 4, pp. 273–276, 2014.Google Scholar
  187. 187.
    Liu, Q., Dong, G., Xiao, Y., Gao, F., Wang, M., et al., “An All-Thin-Film Inorganic Electrochromic Device Monolithically Fabricated on Flexible PET/ITO Substrate by Magnetron Sputtering,” Materials Letters, Vol. 142, pp. 232–234, 2015.CrossRefGoogle Scholar
  188. 188.
    Yun, S. U., Yoo, S. J., Lim, J. W., Park, S. H., Cha, I. Y., et al., “Enhanced Electrochromic Properties of Ir-Ta Oxide Grown Using a Cosputtering System,” Journal of the Electrochemical Society, Vol. 157, No. 7, pp. J256–J260, 2010.CrossRefGoogle Scholar
  189. 189.
    Abe, Y., Ueta, H., Obata, T., Kawamura, M., Sasaki, K., et al., “Effects of Sputtering Gas Pressure on Electrochromic Properties of Ni Oxyhydroxide Thin Films Prepared by Reactive Sputtering in H2O Atmosphere,” Japanese Journal of Applied Physics, Vol. 49, No. 11R, Paper No. 115802, 2010.Google Scholar
  190. 190.
    Sun, X., Liu, Z., and Cao, H., “Effects of Film Density on Electrochromic Tungsten Oxide Thin Films Deposited by Reactive DC-Pulsed Magnetron Sputtering,” Journal of Alloys and Compounds, Vol. 504, pp. S418–S421, 2010.CrossRefGoogle Scholar
  191. 191.
    Gil-Rostra, J., Cano, M., Pedrosa, J. M., Ferrer, F. J., García-García, F., et al., “Electrochromic Behavior of WxSiyOz Thin Films Prepared by Reactive Magnetron Sputtering at Normal and Glancing Angles,” ACS Applied Materials and Interfaces, Vol. 4, No. 2, pp. 628–638, 2012.CrossRefGoogle Scholar
  192. 192.
    Chun, D., Kim, M., Lee, J., and Ahn, S., “TiO2 Coating on Metal and Polymer Substrates by Nano-Particle Deposition System (NPDS),” CIRP Annals-Manufacturing Technology, Vol. 57, No. 1, pp. 551–554, 2008.CrossRefGoogle Scholar
  193. 193.
    Chun, D.-M., Choi, J.-O., Lee, C. S., Kanno, I., Kotera, H., et al., “Nano-Particle Deposition System (NPDS): Low Energy Solvent-Free Dry Spray Process for Direct Patterning of Metals and Ceramics at Room Temperature,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1107–1112, 2012.CrossRefGoogle Scholar
  194. 194.
    Kim, M.-S., Chun, D.-M., Choi, J.-O., Lee, J.-C., Kim, K.-S., et al., “Room Temperature Deposition of TiO2 Using Nano Particle Deposition System (NPDS): Application to Dye-Sensitized Solar Cell (DSSC),” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 749–752, 2011.CrossRefGoogle Scholar
  195. 195.
    Park, S.-I., Kim, S., Choi, J.-O., Song, J.-H., Taya, M., et al., “Low-Cost Fabrication of WO3 Films Using a Room Temperature and Low-Vacuum Air-Spray based Deposition System for Inorganic Electrochromic Device Applications,” Thin Solid Films, Vol. 589, pp. 412–418, 2015.CrossRefGoogle Scholar
  196. 196.
    Sun, X., Cao, H., Liu, Z., and Li, J., “Influence of Annealing Temperature on Microstructure and Optical Properties of Sol-Gel Derived Tungsten Oxide Films,” Applied Surface Science, Vol. 255, No. 20, pp. 8629–8633, 2009.CrossRefGoogle Scholar
  197. 197.
    Zhang, Y., Yuan, J., Le, J., Song, L., and Hu, X., “Structural and Electrochromic Properties of Tungsten Oxide Prepared by Surfactant-Assisted Process,” Solar Energy Materials and Solar Cells, Vol. 93, No. 8, pp. 1338–1344, 2009.CrossRefGoogle Scholar
  198. 198.
    Naseri, N., Azimirad, R., Akhavan, O., and Moshfegh, A., “Improved Electrochromical Properties of Sol-Gel WO3 Thin Films by Doping Gold Nanocrystals,” Thin Solid Films, Vol. 518, No. 8, pp. 2250–2257, 2010.CrossRefGoogle Scholar
  199. 199.
    Kim, C.-Y., Lee, M., Huh, S.-H., and Kim, E.-K., “WO3 Thin Film Coating from H2O-Controlled Peroxotungstic Acid and Its Electrochromic Properties,” Journal of Sol-Gel Science and Technology, Vol. 53, No. 2, pp. 176–183, 2010.CrossRefGoogle Scholar
  200. 200.
    Wang, W., Pang, Y., and Hodgson, S. N., “Preparation, Characterisation and Electrochromic Property of Mesostructured Tungsten Oxide Films via a Surfactant Templated Sol-Gel Process from Tungstic Acid,” Journal of Sol-Gel Science and Technology, Vol. 54, No. 1, pp. 19–28, 2010.CrossRefGoogle Scholar
  201. 201.
    Deng, J., Gu, M., and Di, J., “Electrochromic Properties of WO3 Thin Film Onto Gold Nanoparticles Modified Indium Tin Oxide Electrodes,” Applied Surface Science, Vol. 257, No. 13, pp. 5903–5907, 2011.CrossRefGoogle Scholar
  202. 202.
    Yang, L., Ge, D., Zhao, J., Ding, Y., Kong, X., et al., “Improved Electrochromic Performance of Ordered Macroporous Tungsten Oxide Films for IR Electrochromic Device,” Solar Energy Materials and Solar Cells, Vol. 100, pp. 251–257, 2012.CrossRefGoogle Scholar
  203. 203.
    Kattouf, B., Ein-Eli, Y., Siegmann, A., and Frey, G. L., “Hybrid Mesostructured Electrodes for Fast-Switching Proton-Based Solid State Electrochromic Devices,” Journal of Materials Chemistry C, Vol. 1, No. 1, pp. 151–159, 2013.CrossRefGoogle Scholar
  204. 204.
    Wu, C.-L., Wang, C.-K., Lin, C.-K., Wang, S.-C., and Huang, J.-L., “Electrochromic Properties of Nanostructured Tungsten Oxide Films Prepared by Surfactant-Assisted Sol-Gel Process,” Surface and Coatings Technology, Vol. 231, pp. 403–407, 2013.CrossRefGoogle Scholar
  205. 205.
    Li, C.-P., Engtrakul, C., Tenent, R. C., and Wolden, C. A., “Scalable Synthesis of Improved Nanocrystalline, Mesoporous Tungsten Oxide Films with Exceptional Electrochromic Performance,” Solar Energy Materials and Solar Cells, Vol. 132, pp. 6–14, 2015.CrossRefGoogle Scholar
  206. 206.
    Chatzikyriakou, D., Krins, N., Gilbert, B., Colson, P., Dewalque, J., et al., “Mesoporous Amorphous Tungsten Oxide Electrochromic Films: A Raman Analysis of Their Good Switching Behavior,” Electrochimica Acta, Vol. 137, pp. 75–82, 2014.CrossRefGoogle Scholar
  207. 207.
    Wei, H., Ding, D., Yan, X., Guo, J., Shao, L., et al., “Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer,” Electrochimica Acta, Vol. 132, pp. 58–66, 2014.CrossRefGoogle Scholar
  208. 208.
    Purushothaman, K. and Muralidharan, G., “The Effect of Annealing Temperature on the Electrochromic Properties of Nanostructured NiO Films,” Solar Energy Materials and Solar Cells, Vol. 93, No. 8, pp. 1195–1201, 2009.CrossRefGoogle Scholar
  209. 209.
    Lou, X., Zhao, X., and He, X., “Boron Doping Effects in Electrochromic Properties of NiO Films Prepared by Sol-Gel,” Solar Energy, Vol. 83, No. 12, pp. 2103–2108, 2009.CrossRefGoogle Scholar
  210. 210.
    Sawaby, A., Selim, M., Marzouk, S., Mostafa, M., and Hosny, A., “Structure, Optical and Electrochromic Properties of NiO Thin Films,” Physica B: Condensed Matter, Vol. 405, No. 16, pp. 3412–3420, 2010.CrossRefGoogle Scholar
  211. 211.
    Purushothaman, K., Antony, S. J., and Muralidharan, G., “Optical, Structural and Electrochromic Properties of Nickel Oxide Films Produced by Sol-Gel Technique,” Solar Energy, Vol. 85, No. 5, pp. 978–984, 2011.CrossRefGoogle Scholar
  212. 212.
    Zhang, K., Zhang, X., Zhang, C., Zhang, S., Wang, X., et al., “Electrochromic Behavior of NiO-TiO2 Films Prepared with Sodium Dodecyl Sulfonate Added to the Sol,” Solar Energy Materials and Solar Cells, Vol. 114, No. pp. 192–198, 2013.Google Scholar
  213. 213.
    Jin, A., Chen, W., Zhu, Q., Yang, Y., Volkov, V., et al., “Structural and Electrochromic Properties of Molybdenum Doped Vanadium Pentoxide Thin Films by Sol-Gel and Hydrothermal Synthesis,” Thin Solid Films, Vol. 517, No. 6, pp. 2023–2028, 2009.CrossRefGoogle Scholar
  214. 214.
    Hajzeri, M., Vuk, A. Š., Perše, L. S., Čolović, M., Herbig, B., et al., “Sol-Gel Vanadium Oxide Thin Films for a Flexible Electronically Conductive Polymeric Substrate,” Solar Energy Materials and Solar Cells, Vol. 99, pp. 62–72, 2012.CrossRefGoogle Scholar
  215. 215.
    Dhanasankar, M., Purushothaman, K., and Muralidharan, G., “Effect of Temperature of Annealing on Optical, Structural and Electrochromic Properties of Sol-Gel Dip Coated Molybdenum Oxide Films,” Applied Surface Science, Vol. 257, No. 6, pp. 2074–2079, 2011.CrossRefGoogle Scholar
  216. 216.
    Li, C.-P., Lin, F., Richards, R. M., Engtrakul, C., Tenent, R. C., et al., “The Influence of Sol-Gel Processing on the Electrochromic Properties of Mesoporous WO3 Films Produced by Ultrasonic Spray Deposition,” Solar Energy Materials and Solar Cells, Vol. 121, pp. 163–170, 2014.CrossRefGoogle Scholar
  217. 217.
    Kharade, R., Mane, S., Mane, R., Patil, P., and Bhosale, P., “Synthesis and Characterization of Chemically Grown Electrochromic Tungsten Oxide,” Journal of Sol-Gel Science and Technology, Vol. 56, No. 2, pp. 177–183, 2010.CrossRefGoogle Scholar
  218. 218.
    Kadam, P., Tarwal, N., Shinde, P., Mali, S., Patil, R., et al., “Enhanced Optical Modulation due to SPR in Gold Nanoparticles Embedded WO3 Thin Films,” Journal of Alloys and Compounds, Vol. 509, No. 5, pp. 1729–1733, 2011.CrossRefGoogle Scholar
  219. 219.
    Lin, Y. S., Wu, S. S., and Tsai, T. H., “High-Rate Deposition of Electrochromic Organotungsten Oxide Thin Films for Flexible Electrochromic Devices by Atmospheric Pressure Plasma Jet: The Effect of Substrate Distance,” Plasma Processes and Polymers, Vol. 8, No. 8, pp. 728–739, 2011.CrossRefGoogle Scholar
  220. 220.
    Lin, F., Li, C.-P., Chen, G., Tenent, R. C., Wolden, C. A., et al., “Low-Temperature Ozone Exposure Technique to Modulate the Stoichiometry of WOx Nanorods and Optimize the Electrochromic Performance,” Nanotechnology, Vol. 23, No. 25, Paper No. 255601, 2012.Google Scholar
  221. 221.
    Kharade, R. R., Patil, K., Patil, P., and Bhosale, P., “Novel Microwave Assisted Sol-Gel Synthesis (MW-SGS) and Electrochromic Performance of Petal like H-WO3 Thin Films,” Materials Research Bulletin, Vol. 47, No. 7, pp. 1787–1793, 2012.CrossRefGoogle Scholar
  222. 222.
    Sonavane, A., Inamdar, A., Deshmukh, H., and Patil, P., “Multicoloured Electrochromic Thin Films of NiO/PANI,” Journal of Physics D: Applied Physics, Vol. 43, No. 31, Paper No. 315102, 2010.Google Scholar
  223. 223.
    Dalavi, D., Suryavanshi, M., Patil, D., Mali, S., Moholkar, A., et al., “Nanoporous Nickel Oxide Thin Films and Its Improved Electrochromic Performance: Effect of Thickness,” Applied Surface Science, Vol. 257, No. 7, pp. 2647–2656, 2011.CrossRefGoogle Scholar
  224. 224.
    Huang, H., Tian, J., Zhang, W., Gan, Y., Tao, X., et al., “Electrochromic Properties of Porous NiO Thin Film as a Counter Electrode for NiO/WO3 Complementary Electrochromic Window,” Electrochimica Acta, Vol. 56, No. 11, pp. 4281–4286, 2011.CrossRefGoogle Scholar
  225. 225.
    Kim, D.-G., Kim, S. H., and Kim, Y. D., “Electrochromic Property of MoO3 Thin Films Deposited by Chemical Vapor Transport Synthesis,” Japanese Journal of Applied Physics, Vol. 50, No. 10R, Paper No. 102601, 2011.Google Scholar
  226. 226.
    Chung, Y.-W., Fang, H.-S., Lee, J.-H., and Tsai, C.-J., “Fabrication of Flexible Thin Film with Pattern Structure and Macroporous Array Consisting of Nanoparticles by Electrophoretic Deposition,” Japanese Journal of Applied Physics, Vol. 49, No. 6S, Paper No. 06GH11, 2010.Google Scholar
  227. 227.
    Demiri, S., Najdoski, M., and Velevska, J., “A Simple Chemical Method for Deposition of Electrochromic Prussian Blue Thin Films,” Materials Research Bulletin, Vol. 46, No. 12, pp. 2484–2488, 2011.CrossRefGoogle Scholar
  228. 228.
    Lin, Y.-S., Lai, J.-Y., Tsai, T.-H., Chuang, P.-Y., and Chen, Y.-C., “Effects of Oxygen Addition on Electrochromic Properties in Low Temperature Plasma-Enhanced Chemical Vapor Deposition-Synthesized MoOxCy Thin Films for Flexible Electrochromic Devices,” Thin Solid Films, Vol. 519, No. 11, pp. 3875–3882, 2011.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2016

Authors and Affiliations

  • Sung-Ik Park
    • 1
  • Ying-Jun Quan
    • 1
  • Se-Heon Kim
    • 1
  • Hyungsub Kim
    • 2
  • Sooyeun Kim
    • 3
  • Doo-Man Chun
    • 4
  • Caroline S. Lee
    • 2
  • Minoru Taya
    • 5
  • Won-Shik Chu
    • 6
  • Sung-Hoon Ahn
    • 1
    • 6
  1. 1.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Materials EngineeringHanyang UniversityGyeonggi-doSouth Korea
  3. 3.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  4. 4.School of Mechanical EngineeringUniversity of UlsanUlsanSouth Korea
  5. 5.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA
  6. 6.Institute of Advanced Machinery and DesignSeoul National UniversitySeoulSouth Korea

Personalised recommendations