Skip to main content
Log in

Sleep and Nutrition in Athletes

  • SLEEP AND ATHLETIC PERFORMANCE (M GRANDNER, SECTION EDITOR)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Whilst it is known that athletes are particularly vulnerable to sleep difficulties due to high training and competition demands, the relationship between sleep and nutrition in this population is less clear.

Recent Findings

Nutrition is becoming an area of increased interest in relation to athlete sleep and recovery. The adaptive response to training is dictated by a number of variables: duration, intensity, frequency and type of exercise in combination with nutrition both pre- and post-exercise. Training adaptations and recovery including sleep can be optimised by appropriate nutrition practises. There are numerous nutrients that show promise in relation to the promotion of sleep and athlete recovery which are discussed in this article.

Summary

Whilst the number of studies investigating the effect of nutritional interventions on sleep in athletes is increasing, more research is necessary in elite athletic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Walsh NP, Halson SL, Sargent C, Roach GD, Nédélec M, Gupta L, Leeder J, Fullagar HH, Coutts AJ, Edwards BJ, Pullinger SA. Sleep and the athlete: narrative review and 2021 expert consensus recommendations. Brit J Sport Med. 2021;55(7):358–68. https://doi.org/10.1136/bjsports-2020-102025. This review outlines the current knowledge on sleep and the athlete.

    Article  Google Scholar 

  2. Charest J, Grandner MA. Sleep and athletic performance: impacts on physical performance, mental performance, injury risk and recovery, and mental health. Sleep Med Clin. 2020;15(1):41–57. https://doi.org/10.1016/j.jsmc.2019.11.005. This article highlights the prevalence of poor sleep in athletes and its impact.

    Article  PubMed  Google Scholar 

  3. Laux P, Krumm B, Diers M, Flor H. Recovery–stress balance and injury risk in professional football players: a prospective study. J Sports Sci. 2015;33(20):2140–8. https://doi.org/10.1080/02640414.2015.1064538.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Le Meur Y, Pichon A, Schaal K, Schmitt L, Louis J, Gueneron J, Vidal PP, Hausswirth C. Evidence of parasympathetic hyperactivity in functionally overreached athletes. Med Sci Sports Exerc. 2013;45(11):2061–71. https://doi.org/10.1249/MSS.0b013e3182980125.

    Article  PubMed  Google Scholar 

  5. Romyn G, Lastella M, Miller DJ, Versey NG, Roach GD, Sargent C. Daytime naps can be used to supplement night-time sleep in athletes. Chronobiol Int. 2018;35(6):865–8. https://doi.org/10.1080/07420528.2018.1466795.

    Article  PubMed  Google Scholar 

  6. Lastella M, Roach GD, Halson SL, Sargent C. The chronotype of elite athletes. J Hum Kinet. 2016;54(1):219–25. https://doi.org/10.1515/hukin-2016-0049.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Watson AM. Sleep and athletic performance. Curr Sports Med Rep. 2017;16(6):413–8. https://doi.org/10.1249/JSR.0000000000000418. This article highlights the link between sleep and athletic performance.

    Article  PubMed  Google Scholar 

  8. Cullen T, Thomas G, Wadley AJ, Myers T. The effects of a single night of complete and partial sleep deprivation on physical and cognitive performance a Bayesian analysis. J Sports Sci. 2019;37(23):2726. https://doi.org/10.1080/02640414.2019.1662539.

    Article  PubMed  Google Scholar 

  9. Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry. 2016;80(1):40–52. https://doi.org/10.1016/j.biopsych.2015.05.014.

    Article  PubMed  Google Scholar 

  10. Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem. 2012;56:1–54. https://doi.org/10.1016/b978-0-12-394317-0.00015-7.

    Article  CAS  PubMed  Google Scholar 

  11. Hagenauer MH, Crodelle JA, Piltz SH, Toporikova N, Ferguson P, Booth V. The modulation of pain by circadian and sleep-dependent processes: a review of the experimental evidence. Biology. 2017;17:1–19. https://doi.org/10.1101/098269.

    Article  CAS  Google Scholar 

  12. Doherty R, Madigan SM, Nevill A, Warrington G, Ellis JG. The sleep and recovery practices of athletes. Nutrients. 2021;13(4):1330. https://doi.org/10.3390/nu13041330.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sargent C, Lastella M, Halson SL, Roach GD. How much sleep does an elite athlete need? Int J Sports Physiol Perform. 2021;1:1–12. https://doi.org/10.1123/ijspp.2020-0896. This article aimed to assess the sleep need of elite athletes.

    Article  Google Scholar 

  14. Venter RE. Perceptions of team athletes on the importance of recovery modalities. Eur J Sport Sci. 2014;14(1):69–76. https://doi.org/10.1080/17461391.2011.643924.

    Article  Google Scholar 

  15. Samuels C, James L, Lawson D, Meeuwisse W. The Athlete Sleep Screening Questionnaire: a new tool for assessing and managing sleep in elite athletes. Brit J Sport Med. 2016;50:418–22. https://doi.org/10.1136/bjsports-2014-094332.

    Article  Google Scholar 

  16. von Rosen P, Frohm A, Kottorp A, Friden C, Heijne A. Too little sleep and an unhealthy diet could increase the risk of sustaining a new injury in adolescent elite athletes. Scan J Med Sci Sports. 2016;27(11):1364–71. https://doi.org/10.1111/sms.12735.

    Article  Google Scholar 

  17. Milewski MD, Skaggs DL, Bishop GA, Pace JL, Ibrahim DA, Wren TA, Barzdukas A. Chronic lack of sleep is associated with increased sports injuries in adolescent athletes. J Ped Orthop. 2014;34(2):129–33. https://doi.org/10.1097/BPO.0000000000000151.

    Article  Google Scholar 

  18. Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(2):139–47. https://doi.org/10.1007/s40279-014-0253-z.

    Article  PubMed Central  Google Scholar 

  19. Bompa, T. and Buzzichelli, C. Periodization Training for Sports, 3rd Edition. Illinois: Human Kinetics, 2015. 9781450469432

  20. Lewis NA, Collins D, Pedlar CR, Rogers JP. Can clinicians and scientists explain and prevent unexplained underperformance syndrome in elite athletes: an interdisciplinary perspective and 2016 update. BMJ Open Sport Exerc Med. 2015;1(1):1–10. https://doi.org/10.1136/bmjsem-2015-000063.

    Article  Google Scholar 

  21. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Med. Med Sci Sports Exerc. 2013;45(1):186–205. https://doi.org/10.1249/MSS.0b013e318279a10a.

    Article  PubMed  Google Scholar 

  22. Gratwicke M, Miles KH, Pyne DB, Pumpa KL, Clark B. Nutritional interventions to improve sleep in team-sport athletes: a narrative review. Nutrients. 2021;13(5):1586. https://doi.org/10.3390/nu13051586. This review summarises emerging knowledge regarding nutrition and sleep in team sport athletes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doherty R, Madigan S, Warrington G, Ellis J. Sleep and nutrition interactions: implications for athletes. Nutrients. 2019;11(4):822. https://doi.org/10.3390/nu11040822. This review summarises how nutrition can promote or impair the sleep of athletes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeukendrup AE. Periodized Nutrition for Athletes. Sports Med. 2017;47(1):1–13. https://doi.org/10.1007/s40279-017-0694-2.

    Article  Google Scholar 

  25. Heaton LE, Davis JK, Rawson ES, Nuccio RP, Witard OC, Stein KW, Baar K, Carter JM, Baker LB. Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Med. 2017;47:2201–18. https://doi.org/10.1007/s40279-017-0759-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Close GL, Hamilton DL, Philip A, Burke LM, Morton JP. New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med. 2016;98:144–58. https://doi.org/10.1016/j.freeradbiomed.2016.01.016.

    Article  CAS  PubMed  Google Scholar 

  27. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Oxford: Oxford University Press.; 2015. https://doi.org/10.1016/0748-5514(85)90140-0.

    Book  Google Scholar 

  28. Stear SJ, Burke LM, Castell LM. BJSM reviews: A-Z of nutritional supplements: dietary supplements, sports nutrition foods and Ergogenic aids for health and performance Part 3. Brit J Sport Med. 2009;43(12):890–2. https://doi.org/10.1136/bjsm.2009.065417.

    Article  CAS  Google Scholar 

  29. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76. https://doi.org/10.1152/physrev.00031.2007.

    Article  CAS  PubMed  Google Scholar 

  30. Robson-Ansley PJ, Gleeson M, Ansley L. Fatigue management in the preparation of Olympic athletes. J Sports Sci. 2009;27(13):1409–20. https://doi.org/10.1080/02640410802702186.

    Article  PubMed  Google Scholar 

  31. Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nystrom T. Unravelling the biological roles of reactive oxygen species. Cell Metab. 2011;13(4):361–6. https://doi.org/10.1016/j.cmet.2011.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nieman DC, Mitmesser SH. Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutrients. 2017;9(5):513–36. https://doi.org/10.3390/nu9050513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cobley JN, Margeritelis NV, Morton JP, Close GL, Nikolaidis MG, Malone JK. The basic chemistry of exercise induced DNA oxidation: oxidative damage, redox signalling, and their interplay. Front Physiol. 2015;6:182–8. https://doi.org/10.3389/fphys.2015.00182.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cobley JN, McHardy H, Morton JP, Nikolaidis MG, Close GL. Influence of vitamin C and vitamin E on redox signalling: implications for exercise adaptations. Free Radic Biol Med. 2015;84:65–76. https://doi.org/10.1016/j.freeradbiomed.2015.03.018.

    Article  CAS  PubMed  Google Scholar 

  35. Mankowski RT, Anton SD, Buford TW, Leeuwenburgh C. Dietary antioxidants as modifiers of physiologic adaptations to exercise. Med Sci Sports Exerc. 2015;47(9):1857–68. https://doi.org/10.1249/mss.0000000000000620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heine W, Radke M, Wutzke KD, Peters E, Kundt G. α-Lactalbumin-enriched low-protein infant formulas: a comparison to breast milk feeding. Acta Paediatr. 1996;85(9):1024–8. https://doi.org/10.1111/j.1651-2227.1996.tb14210.x.

    Article  CAS  PubMed  Google Scholar 

  37. Markus CR, Olivier B, Panhuysen GE, Van der Gugten J, Alles MS, Tuiten A, Westenberg HG, Fekkes D, Koppeschaar HF, de Haan EE. The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable participants raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am J Clin Nutr. 2000;71(6):1536–44. https://doi.org/10.1093/ajcn/71.6.1536.

    Article  CAS  PubMed  Google Scholar 

  38. Markus CR, Jonkman LM, Lammers JH, Deutz NE, Messer MH, Rigtering N. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am J Clin Nutr. 2005;81(5):1026–33. https://doi.org/10.1093/ajcn/81.5.1026.

    Article  CAS  PubMed  Google Scholar 

  39. Silber BY, Schmitt JAJ. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010;34(3):387–407. https://doi.org/10.1016/j.neubiorev.2009.08.005.

    Article  CAS  PubMed  Google Scholar 

  40. Hudson C, Hudson SP, Hecht T, MacKenzie J. Protein source tryptophan versus pharmaceutical grade tryptophan as an efficacious treatment for chronic insomnia. Nutr Neurosci. 2005;8(2):121–7. https://doi.org/10.1080/10284150500069561.

    Article  CAS  PubMed  Google Scholar 

  41. Arnulf I, Quintin P, Alvarez JC, Vigil L, Touitou Y, Lèbre AS, Bellenger A, Varoquaux O, Derenne JP, Allilaire JF, Benkelfat C. Mid-morning tryptophan depletion delays REM sleep onset in healthy participants. Neuropsychopharmacol Rep. 2002;27(5):843–51. https://doi.org/10.1016/s0893-133x(02)00358-5.

    Article  CAS  Google Scholar 

  42. Bhatti T, Gillin JC, Seifritz E, Moore P, Clark C, Golshan S, Stahl S, Rapaport M, Kelsoe J. Effects of a tryptophan-free amino acid drink challenge on normal human sleep electroencephalogram and mood. Biol Psychiatry. 1998;43(1):52–9. https://doi.org/10.1016/s0006-3223(97)80252-1.

    Article  CAS  PubMed  Google Scholar 

  43. Miles KH, Clark B, Fowler PM, Miller J, Pumpa KL. Sleep practices implemented by team sport coaches and sports science support staff: a potential avenue to improve athlete sleep? J Sci Med Sport. 2019;22:748–52. https://doi.org/10.1016/j.jsams.2019.01.008.

    Article  PubMed  Google Scholar 

  44. Snijders T, Trommelen J, Kouw IW, Holwerda AM, Verdijk LB, Van Loon LJ. The impact of pre-sleep protein ingestion on the skeletal muscle adaptive response to exercise in humans: an update. Front Nutr. 2019;6:17. https://doi.org/10.3389/fnut.2019.00017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Falkenberg E, Aisbett B, Lastella M, Roberts S, Condo D. Nutrient intake, meal timing and sleep in elite male Australian football players. J Sci Med Sport. 2021;24(1):7–12. https://doi.org/10.1016/j.jsams.2020.06.011.

    Article  PubMed  Google Scholar 

  46. Pigeon WR, Carr M, Gorman C, Perlis ML. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: a pilot study. J Med Food. 2010;13:579–83. https://doi.org/10.1089/jmf.2009.0096.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Howatson G, Bell PG, Tallent J, Middleton B, McHugh MP, Ellis J. Effect of tart cherry juice (Prunus Cerasus) on melatonin levels and enhanced sleep quality. E J Nutr. 2012;51(8):909–16. https://doi.org/10.1007/s00394-011-0263-7.

    Article  CAS  Google Scholar 

  48. McHugh M. The health benefits of cherries and potential applications in sports. Scan J Med Sci Sports. 2011;21(5):615–6. https://doi.org/10.1111/j.1600-0838.2011.01390.x.

    Article  CAS  Google Scholar 

  49. Slominski AT, Kleszczyski K, Semak I, Janjetovic Z, Zmijewski MA, Kim TK, Slominski RM, Reiter RJ, Fischer TW. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci. 2014;15(10):17705–32. https://doi.org/10.3390/ijms151017705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galano A, Castañeda-Arriaga R, Pérez-González A, Tan DX, Reiter RJ. Phenolic melatonin-related compounds: their role as chemical protectors against oxidative stress. Molecules. 2016;21(11):1–42. https://doi.org/10.3390/molecules21111442.

    Article  CAS  Google Scholar 

  51. Rondanelli M, Opizzi A, Monteferrario F, Antoniello N, Manni R, Klersy C. The effect of melatonin, magnesium, and zinc on primary insomnia in long-term care facility residents in Italy: a double-blind, placebo-controlled clinical trial. J A Geriatr Soc. 2011;59:82–90. https://doi.org/10.1111/j.1532-5415.2010.03232.x.

    Article  Google Scholar 

  52. Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, Shave RE, Howatson SA. Influence of tart cherry juice on indices of recovery following marathon running. Scan J Med Sci Sports. 2010;20(6):843–52. https://doi.org/10.1111/j.1600-0838.2009.01005.x.

    Article  CAS  Google Scholar 

  53. Bell PG, Stevenson E, Davison GW, Howatson G. The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients. 2016;8(7):441–52. https://doi.org/10.3390/nu8070441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wangdi JT, Sabou V, O’Leary MF, Kelly VG, Bowtell JL. Use, practices and attitudes of elite and sub-elite athletes towards tart cherry supplementation. Sports. 2021;9(4):49. https://doi.org/10.3390/sports9040049.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shamloo S, Irandoust K, Afif AH. The effect of beetroot juice supplementation on physiological fatigue and quality of sleep in male athletes. Sleep Hypn. 2019;21:97–100. https://doi.org/10.5350/sleep.hypn.2019.21.0176.

    Article  Google Scholar 

  56. Halson SL. Nutrition, sleep and recovery. Eur J Sport Sci. 2008;8(2):119–26. https://doi.org/10.1080/17461390801954794.

    Article  Google Scholar 

  57. Peukhuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutr Res. 2012;32:309–19. https://doi.org/10.1016/j.nutres.2012.03.009.

    Article  CAS  Google Scholar 

  58. Arab A, Rafie N, Amani R, Shirani F. The role of magnesium in sleep health: a systematic review of available literature. Biol Trace Elem Res. 2022;22(2):1–8. https://doi.org/10.1007/s12011-022-03162-1.

    Article  CAS  Google Scholar 

  59. Quero C, Manonelles P, Fernández M, Abellán-Aynés O, López-Plaza D, Andreu-Caravaca L, Hinchado M, Gálvez I, Ortega E. Differential health effects on inflammatory, immunological and stress parameters in professional soccer players and sedentary individuals after consuming a synbiotic A triple-blinded, randomized, placebo-controlled pilot study. Nutrients. 2021;13:1321. https://doi.org/10.3390/nu13041321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harnett JE, Pyne DB, McKune AJ, Penm J, Pumpa KL. Probiotic supplementation elicits favourable changes in muscle soreness and sleep quality in rugby players. J Sci Med Sport. 2021;24:195–9. https://doi.org/10.1016/j.jsams.2020.08.005.

    Article  PubMed  Google Scholar 

  61. Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of functional phenolics dietary supplementation on athletes’ performance and recovery: a review. Int J Mol Sci. 2022;23(9):4652. https://doi.org/10.3390/ijms23094652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cao L, Yu H, Shao S, Wang S, Guo Y. Evaluating the antioxidant capacity of polyphenols with an off-on fluorescence probe and the mechanism study. Anal Methods. 2014;6(18):7149–53. https://doi.org/10.1039/c4ay01276c.

    Article  CAS  Google Scholar 

  63. Nakayama T, Uno B. Importance of proton-coupled electron transfer from natural phenolic compounds in superoxide scavenging. Chem Pharm Bull. 2015;63(12):967–73. https://doi.org/10.1248/cpb.c15-00447.

    Article  CAS  Google Scholar 

  64. Marković Z, Đorović J, Petrović ZD, Petrović VP, Simijonović D. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals. J Mol Model. 2015;21(11):1–10. https://doi.org/10.1007/s00894-015-2840-9.

    Article  CAS  Google Scholar 

  65. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53(2):75–100. https://doi.org/10.1007/s12013-009-9043-x.

    Article  CAS  PubMed  Google Scholar 

  66. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. Nutr. 2000;130(8):2073–85. https://doi.org/10.1093/jn/130.8.2073s.

    Article  Google Scholar 

  67. Singletary K. Kiwifruit: Overview of potential health benefits. Nutr Today. 2012;47(3):133–47. https://doi.org/10.1097/nt.0b013e31825744bc.

    Article  Google Scholar 

  68. Stonehouse W, Gammon CS, Beck KL, Conlon CA, von Hurst PR, Kruger R. Kiwifruit: our daily prescription for health. Can J Physiol Pharmacol. 2012;91(6):442–7. https://doi.org/10.1139/cjpp-2012-0303.

    Article  CAS  Google Scholar 

  69. Sun-Waterhouse D, Chen J, Chuah C, Wibisono R, Melton LD, Laing W, Ferguson LR, Skinner MA. Kiwifruit-based polyphenols and related antioxidants for functional foods: kiwifruit extract-enhanced gluten-free bread. Int J Food Sci Nutr. 2009;60(7):251–64. https://doi.org/10.1080/09637480903012355.

    Article  CAS  PubMed  Google Scholar 

  70. Collins BH, Horská A, Hotten PM, Riddoch C, Collins AR. Kiwifruit protects against oxidative DNA damage in human cells and in vitro. Nutr Cancer. 2001;39(1):148–53. https://doi.org/10.1207/s15327914nc391_20.

    Article  CAS  PubMed  Google Scholar 

  71. Lin HH, Tsai PS, Fang SC, Liu JF. Effect of Kiwifruit consumption on sleep quality in adults with sleep problems. Asia Pac J Clin Nutr. 2011;20(2):169–74.

    PubMed  Google Scholar 

  72. Wyatt R, Kupfer D, Sjoerdsma A, Engelman K, Fram D, Snyder F. Effects of L-tryptophan (a natural sedative) on human sleep. Lancet. 1970;296(7678):842–6. https://doi.org/10.1016/s0140-6736(70)92015-5.

    Article  Google Scholar 

  73. Ferguson AR, Ferguson LR. Are kiwifruit really good for you? In V Int Symp on Kiwifruit. 2002;610:131–8. https://doi.org/10.17660/actahortic.2003.610.16.

    Article  Google Scholar 

  74. Fiorentino A, Mastellone C, D’Abrosca B, Pacifico S, Scognamiglio M, Cefarelli G, Caputo R, Monaco P. δ-Tocomonoenol: a new vitamin E from kiwi (Actinidia chinensis) fruits. Food Chem. 2009;115(1):187–92. https://doi.org/10.1016/j.foodchem.2008.11.094.

    Article  CAS  Google Scholar 

  75. Nødtvedt ØO, Hansen AL, Bjorvatn B, Pallesen S. The effects of kiwi fruit consumption in students with chronic insomnia symptoms: a randomized controlled trial. Sleep Biol Rhythmns. 2017;15(2):159–66. https://doi.org/10.1007/s41105-017-0095-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rónán Doherty.

Ethics declarations

Ethics Approval

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Sleep and Athletic Performance

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doherty, R., Madigan, S., Warrington, G. et al. Sleep and Nutrition in Athletes. Curr Sleep Medicine Rep 9, 82–89 (2023). https://doi.org/10.1007/s40675-022-00244-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-022-00244-3

Keywords

Navigation