Skip to main content

Advertisement

Log in

Positive Airway Pressure for Sleep-Related Breathing Disorders in Heart Failure—Overview and Discussion of Potential Mechanisms of Harm

  • Heart Disease and Sleep Disturbances (R Khayat, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The impact of positive airway pressure (PAP) therapies on cardiovascular outcome in obstructive sleep apnea (OSA) and central sleep apnea (CSA) is currently under debate. The goal of this review is to critically analyze the current findings and discuss hypotheses on benefits or even harm in patients with heart failure (HF).

Recent Findings

While PAP sufficiently improves OSA, symptoms and cardiac parameters, the SAVE trial failed to show survival benefits. However, it was limited due to low adherence, non-sleepy population and maximal cardiac pre-treatment. SERVE-HF showed increased mortality in secondary analysis in patients with severe systolic HF with predominant CSA under adaptive servo-ventilation (ASV). Criticism of the trial emanated from high crossover, low compliance, use of older devices, and contradictory beneficial results in other studies. As sudden cardiac deaths was the reported main cause of mortality, influences of pre-medication and methods of pressure support on cardiac instability may have contributed to the pathogenesis.

Summary

OSA and CSA are main risk factors for poor outcome in cardiovascular disease. However, the effect of CPAP and ASV on cardiovascular comorbidities and prognosis requires further evaluation. Further insights from ongoing trials are urgently needed to clarify benefits and risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Randerath W, Javaheri S. Sleep-disordered breathing in patients with heart failure. Curr Sleep Med Rep. 2016;2(2):99–106.

    Article  Google Scholar 

  2. Brack T, Randerath W, Bloch KE. Cheyne-Stokes respiration in patients with heart failure: prevalence, causes, consequences and treatments. Respiration. 2012;83(2):165–76.

    Article  PubMed  Google Scholar 

  3. Khayat R, Jarjoura D, Porter K, Sow A, Wannemacher J, Dohar R, et al. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur Heart J. 2015;36(23):1463–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lanfranchi PA, Somers VK, Braghiroli A, Corra U, Eleuteri E, Giannuzzi P. Central sleep apnea in left ventricular dysfunction: prevalence and implications for arrhythmic risk. Circulation. 2003;107(5):727–32.

    Article  PubMed  Google Scholar 

  5. Leung RS, Diep TM, Bowman ME, Lorenzi-Filho G, Bradley TD. Provocation of ventricular ectopy by cheyne-stokes respiration in patients with heart failure. Sleep. 2004;27(7):1337–43.

    Article  PubMed  Google Scholar 

  6. Mayer G, Arzt M, Braumann B, Ficker JH, Fietze I, Frohnhofen H, et al. German S3 Guideline Nonrestorative Sleep/Sleep Disorders, chapter “Sleep-Related Breathing Disorders in Adults,” short version: German Sleep Society (Deutsche Gesellschaft fur Schlafforschung und Schlafmedizin, DGSM). Somnologie (Berl). 2017;21(4):290–301.

    Article  Google Scholar 

  7. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3(4):310–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yumino D, Redolfi S, Ruttanaumpawan P, Su MC, Smith S, Newton GE, et al. Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation. 2010;121(14):1598–605.

    Article  PubMed  Google Scholar 

  10. Nicholas W, Javaheri S. Pathophysiologic mechanisms of cardiovascular disease in obstructive sleep apnea. In: Javaheri S, Saunders W, editors. Sleep medicine clinics: sleep and cardiovascular disease. Philadelphia: Elsevier; 2007. p. 539–47.

    Google Scholar 

  11. McGinley BM, Schwartz AR, Schneider H, Kirkness JP, Smith PL, Patil SP. Upper airway neuromuscular compensation during sleep is defective in obstructive sleep apnea. J Appl Physiol (1985). 2008;105(1):197–205.

    Article  Google Scholar 

  12. Bonsignore MR, Esquinas C, Barcelo A, Sanchez-de-la-Torre M, Paterno A, Duran-Cantolla J, et al. Metabolic syndrome, insulin resistance and sleepiness in real-life obstructive sleep apnoea. Eur Respir J. 2012;39(5):1136–43.

    Article  PubMed  CAS  Google Scholar 

  13. Somers V, Javaheri S. Cardiovascular effects of sleep-related breathing disorders. Principles and practices of sleep medicine. 5th ed. St. Louis, Elsevier; 2011. p. 1370–80.

  14. Gilmartin GS, Lynch M, Tamisier R, Weiss JW. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2010;299(3):H925–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Garvey JF, Taylor CT, McNicholas WT. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J. 2009;33(5):1195–205.

    Article  PubMed  CAS  Google Scholar 

  16. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84.

    Article  PubMed  CAS  Google Scholar 

  17. Young T, Nieto J, Javaheri S. Systemic and pulmonary hypertension in obstructive sleep apnea. In: Kryger M, Roth T, Dement W, Saunders W, editors. Principles and practices of sleep medicine. 5th ed. Philadelphia: Elsevier; 2008. p. 1381–92.

    Google Scholar 

  18. Arias MA, Garcia-Rio F, Alonso-Fernandez A, Mediano O, Martinez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation. 2005;112(3):375–83.

    Article  PubMed  Google Scholar 

  19. Shivalkar B, Van de Heyning C, Kerremans M, Rinkevich D, Verbraecken J, De Backer W, et al. Obstructive sleep apnea syndrome: more insights on structural and functional cardiac alterations, and the effects of treatment with continuous positive airway pressure. J Am Coll Cardiol. 2006;47(7):1433–9.

    Article  PubMed  Google Scholar 

  20. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA. 2000;283(14):1829–36.

    Article  PubMed  CAS  Google Scholar 

  21. Randerath W, Javaher S. Sleep and the heart. In: Chokroverty S, Ferini-Strambi L, editors. Oxford textbook of sleep disorders. Oxford: Oxford University Press; 2017. p. 395–408.

    Google Scholar 

  22. Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O'Connor GT, Resnick HE, et al. Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med. 2010;182(2):269–77.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Johnson KG, Johnson DC. Frequency of sleep apnea in stroke and TIA patients: a meta-analysis. J Clin Sleep Med. 2010;6(2):131–7.

    PubMed  PubMed Central  Google Scholar 

  24. Peker Y, Hedner J, Kraiczi H, Loth S. Respiratory disturbance index: an independent predictor of mortality in coronary artery disease. Am J Respir Crit Care Med. 2000;162(1):81–6.

    Article  PubMed  CAS  Google Scholar 

  25. Yumino D, Tsurumi Y, Takagi A, Suzuki K, Kasanuki H. Impact of obstructive sleep apnea on clinical and angiographic outcomes following percutaneous coronary intervention in patients with acute coronary syndrome. Am J Cardiol. 2007;99(1):26–30.

    Article  PubMed  Google Scholar 

  26. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046–53.

    Article  PubMed  Google Scholar 

  27. Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, O'Connor GT, et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med. 2009;6(8):e1000132.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31(8):1071–8.

    PubMed  PubMed Central  Google Scholar 

  29. Duran J, Esnaola S, Rubio R, Iztueta A. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med. 2001;163(3 Pt 1):685–9.

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862–5.

    Article  PubMed  CAS  Google Scholar 

  31. Randerath WJ, Schraeder O, Galetke W, Feldmeyer F, Ruhle KH, Autoadjusting CPAP. Therapy based on impedance efficacy, compliance and acceptance. Am J Respir Crit Care Med. 2001;163(3 Pt 1):652–7.

    Article  PubMed  CAS  Google Scholar 

  32. Randerath WJ, Galetke W, Ruhle KH. Auto-adjusting CPAP based on impedance versus bilevel pressure in difficult-to-treat sleep apnea syndrome: a prospective randomized crossover study. Med Sci Monit. 2003;9(8):CR353–8.

    PubMed  Google Scholar 

  33. Martinez-Garcia MA, Capote F, Campos-Rodriguez F, Lloberes P, Diaz de Atauri MJ, Somoza M, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310(22):2407–15.

    Article  PubMed  CAS  Google Scholar 

  34. Randerath WJ, Nothofer G, Priegnitz C, Anduleit N, Treml M, Kehl V, et al. Long-term auto-servoventilation or constant positive pressure in heart failure and coexisting central with obstructive sleep apnea. Chest. 2012;142(2):440–7.

    Article  PubMed  CAS  Google Scholar 

  35. Buchner NJ, Sanner BM, Borgel J, Rump LC. Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk. Am J Respir Crit Care Med. 2007;176(12):1274–80.

    Article  PubMed  Google Scholar 

  36. Javaheri S, Caref EB, Chen E, Tong KB, Abraham WT. Sleep apnea testing and outcomes in a large cohort of Medicare beneficiaries with newly diagnosed heart failure. Am J Respir Crit Care Med. 2011;183(4):539–46.

    Article  PubMed  Google Scholar 

  37. Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, et al. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest. 2008;133(3):690–6.

    Article  PubMed  Google Scholar 

  38. • McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375(10):919–31. This is an important RCT, which failed to show a survival benefit in OSA patients treated with CPAP. The results indicate on the importance of good compliance and the relevance of sleepiness.

    Article  PubMed  Google Scholar 

  39. Turino C, de Batlle J, Woehrle H, Mayoral A, Castro-Grattoni AL, Gomez S, et al. Management of continuous positive airway pressure treatment compliance using telemonitoring in obstructive sleep apnoea. Eur Respir J. 2017;49(2):1601128.

    Article  PubMed  Google Scholar 

  40. Galetke W, Puzzo L, Priegnitz C, Anduleit N, Randerath WJ. Long-term therapy with continuous positive airway pressure in obstructive sleep apnea: adherence, side effects and predictors of withdrawal—a ‘real-life’ study. Respiration. 2011;82(2):155–61.

    Article  PubMed  Google Scholar 

  41. Nilius G, Franke KJ, Domanski U, Schroeder M, Ruhle KH. Effect of APAP and heated humidification with a heated breathing tube on adherence, quality of life, and nasopharyngeal complaints. Sleep Breath. 2016;20(1):43–9.

    Article  PubMed  Google Scholar 

  42. La Piana GE, Scartabellati A, Chiesa L, Ronchi L, Raimondi P, Carro MA, et al. Long-term adherence to CPAP treatment in patients with obstructive sleep apnea: importance of educational program. Patient Prefer Adherence. 2011;5:555–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wolkove N, Baltzan M, Kamel H, Dabrusin R, Palayew M. Long-term compliance with continuous positive airway pressure in patients with obstructive sleep apnea. Can Respir J. 2008;15(7):365–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Javaheri S, Dempsey JA. Central sleep apnea. Compr Physiol. 2013;3(1):141–63.

    PubMed  CAS  Google Scholar 

  45. Solin P, Bergin P, Richardson M, Kaye DM, Walters EH, Naughton MT. Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation. 1999;99(12):1574–9.

    Article  PubMed  CAS  Google Scholar 

  46. Nopmaneejumruslers C, Kaneko Y, Hajek V, Zivanovic V, Bradley TD. Cheyne-Stokes respiration in stroke: relationship to hypocapnia and occult cardiac dysfunction. Am J Respir Crit Care Med. 2005;171(9):1048–52.

    Article  PubMed  Google Scholar 

  47. • Randerath W, Verbraecken J, Andreas S, Arzt M, Bloch KE, Brack T, et al. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J. 2017;49(1). This official statement summarizes the state of the art of the management of central sleep apnoea.

  48. Javaheri S, Sands SA, Edwards BA. Acetazolamide attenuates Hunter-Cheyne-Stokes breathing but augments the hypercapnic ventilatory response in patients with heart failure. Ann Am Thorac Soc. 2014;11(1):80–6.

    Article  PubMed  CAS  Google Scholar 

  49. Javaheri S, Corbett WS. Association of low PaCO2 with central sleep apnea and ventricular arrhythmias in ambulatory patients with stable heart failure. Ann Intern Med. 1998;128(3):204–7.

    Article  PubMed  CAS  Google Scholar 

  50. Randerath W. Central and mixed sleep-related breathing disorders. In: Barkoukis T, Matheson J, Ferber R, Doghramji K, Blumer J, editors. Therapy in sleep medicine. Philadelphia: Elsevier; 2012. p. 243–53.

    Chapter  Google Scholar 

  51. Wilcox I, McNamara SG, Dodd MJ, Sullivan CE. Ventilatory control in patients with sleep apnoea and left ventricular dysfunction: comparison of obstructive and central sleep apnoea. Eur Respir J. 1998;11(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  52. Wellman A, Malhotra A, Fogel RB, Edwards JK, Schory K, White DP. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation. J Appl Physiol (1985). 2003;94(1):205–12.

    Article  Google Scholar 

  53. Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep. Am J Respir Crit Care Med. 2002;165(9):1251–60.

    Article  PubMed  Google Scholar 

  54. Bell HJ, Ferguson C, Kehoe V, Haouzi P. Hypocapnia increases the prevalence of hypoxia-induced augmented breaths. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R334–44.

    Article  PubMed  CAS  Google Scholar 

  55. Lobo DM, Trevizan PF, Toschi-Dias E, Oliveira PA, Piveta RB, Almeida DR, et al. Sleep-disordered breathing exacerbates muscle vasoconstriction and sympathetic neural activation in patients with systolic heart failure. Circ Heart Fail. 2016;9(11):e003065.

    Article  PubMed  Google Scholar 

  56. Carmona-Bernal C, Ruiz-Garcia A, Villa-Gil M, Sanchez-Armengol A, Quintana-Gallego E, Ortega-Ruiz F, et al. Quality of life in patients with congestive heart failure and central sleep apnea. Sleep Med. 2008;9(6):646–51.

    Article  PubMed  Google Scholar 

  57. Verbraecken J, Willemen M, De Cock W, Van de Heyning P, De Backer WA. Continuous positive airway pressure and lung inflation in sleep apnea patients. Respiration. 2001;68(4):357–64.

    Article  PubMed  CAS  Google Scholar 

  58. Petrof BJ, Legare M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141(2):281–9.

    Article  PubMed  CAS  Google Scholar 

  59. Malo J, Ali J, Wood LD. How does positive end-expiratory pressure reduce intrapulmonary shunt in canine pulmonary edema? J Appl Physiol Respir Environ Exerc Physiol. 1984;57(4):1002–10.

    PubMed  CAS  Google Scholar 

  60. Smith TC, Marini JJ. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol (1985). 1988;65(4):1488–99.

    Article  CAS  Google Scholar 

  61. de Miguel J, Cabello J, Sanchez-Alarcos JM, Alvarez-Sala R, Espinos D, Alvarez-Sala JL. Long-term effects of treatment with nasal continuous positive airway pressure on lung function in patients with overlap syndrome. Sleep Breath. 2002;6(1):3–10.

    Article  PubMed  Google Scholar 

  62. Tobin MJ. Mechanical ventilation. N Engl J Med. 1994;330(15):1056–61.

    Article  PubMed  CAS  Google Scholar 

  63. Manzano F, Fernandez-Mondejar E, Colmenero M, Poyatos ME, Rivera R, Machado J, et al. Positive-end expiratory pressure reduces incidence of ventilator-associated pneumonia in nonhypoxemic patients. Crit Care Med. 2008;36(8):2225–31.

    Article  PubMed  Google Scholar 

  64. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345–55.

    Article  PubMed  Google Scholar 

  65. Mezzanotte WS, Tangel DJ, Fox AM, Ballard RD, White DP. Nocturnal nasal continuous positive airway pressure in patients with chronic obstructive pulmonary disease. Influence on waking respiratory muscle function. Chest. 1994;106(4):1100–8.

    Article  PubMed  CAS  Google Scholar 

  66. Tkacova R, Rankin F, Fitzgerald FS, Floras JS, Bradley TD. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation. 1998;98(21):2269–75.

    Article  PubMed  CAS  Google Scholar 

  67. Aurora RN, Chowdhuri S, Ramar K, Bista SR, Casey KR, Lamm CI, et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep. 2012;35(1):17–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin P, Naughton MT. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med. 2004;169(3):361–6.

    Article  PubMed  Google Scholar 

  69. Egea CJ, Aizpuru F, Pinto JA, Ayuela JM, Ballester E, Zamarron C, et al. Cardiac function after CPAP therapy in patients with chronic heart failure and sleep apnea: a multicenter study. Sleep Med. 2008;9(6):660–6.

    Article  PubMed  Google Scholar 

  70. Smith LA, Vennelle M, Gardner RS, McDonagh TA, Denvir MA, Douglas NJ, et al. Auto-titrating continuous positive airway pressure therapy in patients with chronic heart failure and obstructive sleep apnoea: a randomized placebo-controlled trial. Eur Heart J. 2007;28(10):1221–7.

    Article  PubMed  Google Scholar 

  71. Bradley TD, Logan AG, Kimoff RJ, Series F, Morrison D, Ferguson K, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353(19):2025–33.

    Article  PubMed  CAS  Google Scholar 

  72. Arzt M, Floras JS, Logan AG, Kimoff RJ, Series F, Morrison D, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007;115(25):3173–80.

    Article  PubMed  Google Scholar 

  73. Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, et al. Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med. 2011;184(9):1067–75.

    Article  PubMed  Google Scholar 

  74. Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146(2):514–23.

    Article  PubMed  Google Scholar 

  75. Javaheri S, Brown LK, Randerath WJ. Clinical applications of adaptive servoventilation devices: part 2. Chest. 2014;146(3):858–68.

    Article  PubMed  Google Scholar 

  76. Javaheri S, Goetting MG, Khayat R, Wylie PE, Goodwin JL, Parthasarathy S. The performance of two automatic servo-ventilation devices in the treatment of central sleep apnea. Sleep. 2011;34(12):1693–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Randerath WJ, Galetke W, Stieglitz S, Laumanns C, Schafer T. Adaptive servo-ventilation in patients with coexisting obstructive sleep apnoea/hypopnoea and Cheyne-Stokes respiration. Sleep Med. 2008;9(8):823–30.

    Article  PubMed  Google Scholar 

  78. Randerath WJ, Galetke W, Kenter M, Richter K, Schafer T. Combined adaptive servo-ventilation and automatic positive airway pressure (anticyclic modulated ventilation) in co-existing obstructive and central sleep apnea syndrome and periodic breathing. Sleep Med. 2009;10(8):898–903.

    Article  PubMed  Google Scholar 

  79. Dellweg D, Kerl J, Hoehn E, Wenzel M, Koehler D. Randomized controlled trial of noninvasive positive pressure ventilation (NPPV) versus servoventilation in patients with CPAP-induced central sleep apnea (complex sleep apnea). Sleep. 2013;36(8):1163–71.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oldenburg O, Bitter T, Lehmann R, Korte S, Dimitriadis Z, Faber L, et al. Adaptive servoventilation improves cardiac function and respiratory stability. Clin Res Cardiol. 2011;100(2):107–15.

    Article  PubMed  Google Scholar 

  81. Kazimierczak A, Krzyzanowski K, Wierzbowski R, Ryczek R, Smurzynski P, Michalkiewicz D, et al. Resolution of exercise oscillatory ventilation with adaptive servoventilation in patients with chronic heart failure and Cheyne-Stokes respiration: preliminary study. Kardiol Pol. 2011;69(12):1266–71.

    PubMed  Google Scholar 

  82. Pepperell JC, Maskell NA, Jones DR, Langford-Wiley BA, Crosthwaite N, Stradling JR, et al. A randomized controlled trial of adaptive ventilation for Cheyne-Stokes breathing in heart failure. Am J Respir Crit Care Med. 2003;168(9):1109–14.

    Article  PubMed  Google Scholar 

  83. Sharma BK, Bakker JP, McSharry DG, Desai AS, Javaheri S, Malhotra A. Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: a systematic review and meta-analysis. Chest. 2012;142(5):1211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Galetke W, Ghassemi BM, Priegnitz C, Stieglitz S, Anduleit N, Richter K, et al. Anticyclic modulated ventilation versus continuous positive airway pressure in patients with coexisting obstructive sleep apnea and Cheyne-Stokes respiration: a randomized crossover trial. Sleep Med. 2014;15(8):874–9.

    Article  PubMed  Google Scholar 

  85. Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H, et al. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study. Circ J. 2015;79(5):981–90.

    Article  PubMed  Google Scholar 

  86. Hetzenecker A, Escourrou P, Kuna ST, Series F, Lewis K, Birner C, et al. Treatment of sleep apnea in chronic heart failure patients with auto-servo ventilation improves sleep fragmentation: a randomized controlled trial. Sleep Med. 2016;17:25–31.

    Article  PubMed  Google Scholar 

  87. Hetzenecker A, Roth T, Birner C, Maier LS, Pfeifer M, Arzt M. Adaptive servo-ventilation therapy of central sleep apnoea and its effect on sleep quality. Clin Res Cardiol. 2016;105(3):189–95.

    Article  PubMed  Google Scholar 

  88. Toyama T, Hoshizaki H, Kasama S, Miyaishi Y, Kan H, Yamashita E, et al. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity, cardiac function, exercise capacity, and symptom in patients with chronic heart failure and Cheyne-Stokes respiration. J Nucl Cardiol. 2017;24(6):1926–37.

    Article  PubMed  Google Scholar 

  89. Takama N, Kurabayashi M. Effect of adaptive servo-ventilation on 1-year prognosis in heart failure patients. Circ J. 2012;76(3):661–7.

    Article  PubMed  Google Scholar 

  90. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373(12):1095–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. • Eulenburg C, Wegscheider K, Woehrle H, Angermann C, d'Ortho MP, Erdmann E, et al. Mechanisms underlying increased mortality risk in patients with heart failure and reduced ejection fraction randomly assigned to adaptive servoventilation in the SERVE-HF study: results of a secondary multistate modelling analysis. Lancet Respir Med. 2016;4(11):873–81. The paper presents post hoc analyses of the SERVE-HF data and demonstrates possible subgroups of increased risk.

    Article  PubMed  Google Scholar 

  92. •• Javaheri S, Brown LK, Randerath W, Khayat R. SERVE-HF: more questions than answers. Chest. 2016;149(4):900–4. This paper critically discusses the limitations of SERVE-HF and possible pathophysiological explanations of the excess mortality.

    Article  PubMed  Google Scholar 

  93. Naughton MT. Cheyne-Stokes respiration: friend or foe? Thorax. 2012;67(4):357–60.

    Article  PubMed  Google Scholar 

  94. Lenique F, Habis M, Lofaso F, Dubois-Rande JL, Harf A, Brochard L. Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 1997;155(2):500–5.

    Article  PubMed  CAS  Google Scholar 

  95. Spiesshofer J, Fox H, Lehmann R, Efken C, Heinrich J, Bitter T, et al. Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne-Stokes respiration compared to healthy volunteers. Heart Vessel. 2016;31(7):1117–30.

    Article  Google Scholar 

  96. Randerath W, Khayat R, Arzt M, Javaheri S. Missing links. Sleep Med. 2015;16(12):1495–6.

    Article  PubMed  CAS  Google Scholar 

  97. Javaheri S, Jarjoura D, Porter K, Randerath W, R. K. Effect of adaptive servo ventilation on mortality in patients with systolic heart failure and central sleep apnea. Eur Resp J. 2017;50(suppl 61):PA 2328.

    Google Scholar 

  98. Tamisier R, Levy P. Management of hypertension in obstructive sleep apnoea: predicting blood pressure reduction under continuous positive airway pressure. Eur Respir J. 2017;50(4):1701822.

    Article  PubMed  Google Scholar 

  99. Malfertheiner MV, Lerzer C, Kolb L, Heider K, Zeman F, Gfullner F, et al. Whom are we treating with adaptive servo-ventilation? A clinical post hoc analysis. Clin Res Cardiol. 2017;106(9):702–10.

    Article  PubMed  Google Scholar 

  100. Brill AK, Pichler Hefti J, Geiser T, Ott SR. The SERVE-HF safety notice in clinical practice—experiences of a tertiary sleep center. Sleep Med. 2017;37:201–7.

    Article  PubMed  Google Scholar 

  101. Randerath W, Schumann K, Treml M, Herkenrath S, Castrogiovanni A, Javaheri S, et al. Adaptive servoventilation in clinical practice: beyond SERVE-HF? ERJ Open Res. 2017;3(4):00078–2017.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Randerath.

Ethics declarations

Conflict of Interest

Winfried Randerath reports grants and personal fees from Philips Respironics, grants and personal fees from Inspire, grants and personal fees from Heinen & Löwenstein, and grants and personal fees from Resmed, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Disease and Sleep Disturbances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randerath, W. Positive Airway Pressure for Sleep-Related Breathing Disorders in Heart Failure—Overview and Discussion of Potential Mechanisms of Harm. Curr Sleep Medicine Rep 4, 149–159 (2018). https://doi.org/10.1007/s40675-018-0116-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-018-0116-5

Keywords

Navigation