Skip to main content

Advertisement

Log in

Coordinating dissent as an alternative to consensus classification: insights from systematics for bio-ontologies

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

The collection and classification of data into meaningful categories is a key step in the process of knowledge making. In the life sciences, the design of data discovery and integration tools has relied on the premise that a formal classificatory system for expressing a body of data should be grounded in consensus definitions for classifications. On this approach, exemplified by the realist program of the Open Biomedical Ontologies Foundry, progress is maximized by grounding the representation and aggregation of data on settled knowledge. We argue that historical practices in systematic biology provide an important and overlooked alternative approach to classifying and disseminating data, based on a principle of coordinative rather than definitional consensus. Systematists have developed a robust system for referring to taxonomic entities that can deliver high quality data discovery and integration without invoking consensus about reality or “settled” science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Our notion of a big data trajectory is distinct from Sabina Leonelli’s concept of data journeys, although they are connected in important ways. Briefly, Leonelli uses data journeys to evoke how data travel across time and place from their original situations of production to new situations of use. In contrast, the idea of a big data trajectory is meant to describe the progress a scientific community makes as a function of increasing the amount of data available for a problem.

  2. We use terminology common to OWL here since it is the easiest to grasp intuitively, but researchers in the first-order logic and description logic communities use different terms for operationally equivalent ideas.

  3. Smith and Ceusters give different general characterizations of universals and particulars in different places, though see Merrill (2010a). For example, in Smith (2003), universals are multiply located entities that exist in particulars, while particulars are entities with only one location in space at a time. Things that can have predicates thus include universals as well as particulars. Smith also adds a further logical primitive, the instantiation relation, and stipulates that only particulars can instantiate universals (Smith 2003).

  4. Systematized Nomenclature of Medicine.

  5. Note that we are not mentioning a design like this to endorse it. As Minelli (2017, this issue) has adroitly pointed out, there are major worries over the quality and durability of these and other name-based aggregators that include ‘grey’ non-Linnaean names. In the next section we will return to taxonomic names and consider different design solutions.

  6. This empiricist concern about the theory-dependence of anatomical data has parallels to the earlier disputes between pheneticists, cladists, and evolutionary systematists about the best methodology for inferring classifications (Hull 1988; Sterner and Lidgard 2018), and would be a fruitful point of contact between philosophical analyses of homology and scientific practice.

  7. If the circumscription includes two or more type specimens, the name associated with the most senior type specimen is the valid/correct name for the species and the other names become (junior) synonyms.

References

  • Agar, J. (2006). What difference did computers make? Social Studies of Science,36(6), 869–907.

    Article  Google Scholar 

  • Anonymous. (2018). Foundational model of anatomy. The National Center for Biomedical Ontology. Bioportal.bioontology.org. Retrieved December 18 from https://bioportal.bioontology.org/ontologies/FMA.

  • Arp, R., Smith, B., & Spear, A. D. (2015). Building ontologies with basic formal ontology. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics,25(1), 25–29.

    Article  Google Scholar 

  • Berendsohn, W. G., & Geoffroy, M. (2007). Networking taxonomic concepts—Uniting without ‘unitary-ism. In G. Curry & C. Humphries (Eds.), Biodiversity databases—Techniques, politics, and applications. Systematics association special volume (Vol. 73, pp. 13–22). Baton Rouge: CRC Taylor & Francis.

    Chapter  Google Scholar 

  • Bertone, M. A., Mikó, I., Yoder, M. J., Seltmann, K. C., Balhoff, J. P., & Deans, A. R. (2013). Matching arthropod anatomy ontologies to the Hymenoptera anatomy ontology: Results from a manual alignment. Database,2013, bas057. https://doi.org/10.1093/database/bas057.

    Article  Google Scholar 

  • Blomquist, H. L. (1948). The grasses of North Carolina. Durham: Duke University Press.

    Google Scholar 

  • Bowker, G. C. (2000). Biodiversity datadiversity. Social Studies of Science,30(5), 643–683.

    Article  Google Scholar 

  • Ceusters, W., Smith, B., & Goldberg, L. J. (2005). A terminological and ontological analysis of the NCI thesaurus. Methods of Information in Medicine,44(4), 498–507.

    Article  Google Scholar 

  • Conix, S. (2018). Integrative taxonomy and the operationalization of evolutionary independence. European Journal for Philosophy of Science,154(2), 1–17.

    Google Scholar 

  • Cook, O. F. (1898). The method of types. Science, 8(198), 513–516.

    Article  Google Scholar 

  • Costa, M., Reeve, S., Grumbling, G., & Osumi-Sutherland, D. (2013). The Drosophila anatomy ontology. Journal of Biomedical Semantics,4(1), 32.

    Article  Google Scholar 

  • Costello, M. J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B. W., et al. (2013). Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PLoS ONE,8(1), e51629. https://doi.org/10.1371/journal.pone.0051629.

    Article  Google Scholar 

  • Day-Richter, J., Harris, M. A., Haendel, M., The Gene Ontology OBO-Edit Working Group, & Lewis, S. (2007). OBO-Edit—An ontology editor for biologists. Nucleic Acids Research,23(16), 2198–2200.

    Google Scholar 

  • Dubois, A. (2005). Proposed rules for the incorporation of nomina of higher-ranked zoological taxa in the International Code of Zoological Nomenclature. Zoosystema,27(2), 365–426.

    Google Scholar 

  • Edgecombe, G. D. (2008). Anatomical nomenclature: Homology, standardization and datasets. Zootaxa,1950, 87–95.

    Article  Google Scholar 

  • Epstein, M. (2012). Nomenclature, terminology and language. Bionomina,5, 1–56.

    Article  Google Scholar 

  • Federhen, S. (2012). The NCBI taxonomy database. Nucleic Acids Research,40, D136–D143.

    Article  Google Scholar 

  • Fine, A. (2009). The shaky game: Einstein, realism, and the quantum theory. Chicago: University of Chicago Press.

    Google Scholar 

  • Franz, N., Gilbert, E., Ludäscher, B., & Weakley, A. (2016a). Controlling the taxonomic variable: Taxonomic concept resolution for a Southeastern United States herbarium portal. Research Ideas and Outcomes,2, e10610.

    Article  Google Scholar 

  • Franz, N. M., Chen, M., Kianmajd, P., Yu, S., Bowers, S., Weakley, A. S., et al. (2016b). Names are not good enough: Reasoning over taxonomic change in the Andropogon complex. Semantic Web,7(6), 645–667.

    Article  Google Scholar 

  • Franz, N. M., Chen, M., Yu, S., Kianmajd, P., Bowers, S., & Ludäscher, B. (2015). Reasoning over taxonomic change: Exploring alignments for the Perelleschus use case. PLoS ONE,10(2), e0118247.

    Article  Google Scholar 

  • Franz, N. M., & Goldstein, A. M. (2013). Phenotype ontologies: Are homology relations central enough? A reply to Deans Et Al. Trends in Ecology & Evolution,28(3), 131–132.

    Article  Google Scholar 

  • Franz, N. M., & Peet, R. K. (2009). Perspectives: Towards a language for mapping relationships among taxonomic concepts. Systematics and Biodiversity,7(1), 5–20.

    Article  Google Scholar 

  • Franz, N. M., Pier, N. M., Reeder, D. M., Chen, M., Yu, S., Kianmajd, P., et al. (2016c). Two influential primate classifications logically aligned. Systematic Biology,65(4), 561–582.

    Article  Google Scholar 

  • Franz, N. M., & Sterner, B. W. (2018). To increase trust, change the social design behind aggregated biodiversity data. Database. https://doi.org/10.1093/database/bax100.

    Article  Google Scholar 

  • Franz, N. M., & Thau, D. (2010). Biological taxonomy and ontology development: Scope and limitations. Biodiversity Informatics,7(1), 45–66.

    Google Scholar 

  • Franz, N. M., Zhang, C., & Lee, J. (2017). A logic approach to modelling nomenclatural change. Cladistics,34(3), 336–357.

    Article  Google Scholar 

  • Ghiselin, M. (1974). A radical solution to the species problem. Systematic Zoology,23, 536–544.

    Article  Google Scholar 

  • Guala, G. F. (2016). The importance of species name synonyms in literature searches. PLoS ONE,11(9), e0162648.

    Article  Google Scholar 

  • Hitchcock, A. S., & Chase, A. (1950). Manual of the grasses of the United States (2nd ed., Vol. 200). Washington, DC: US Department of Agriculture.

    Google Scholar 

  • Hoehndorf, R., Dumontier, M., & Gkoutos, G. V. (2013). Evaluation of research in biomedical ontologies. Briefings in Bioinformatics,14(6), 696–712.

    Article  Google Scholar 

  • Hull, D. L. (1976). Are species really individuals. Systematic Zoology,25, 174–191.

    Article  Google Scholar 

  • Hull, D. L. (1988). Science as a process. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • iNaturalist. (2019). Taxon frameworks. iNaturalist.org. Retrieved March 29 from https://www.inaturalist.org/pages/taxon_frameworks.

  • Kissling, W. D., Ahumada, J. A., Bowser, A., Fernandez, M., Fernandez, N., García, E. A., et al. (2017). Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biological Reviews,93(1), 600–625.

    Article  Google Scholar 

  • Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Kumar, A., & Smith, B. (2003). The universal medical language system and the gene ontology: Some critical reflections. In KI 2003: Advances in artificial intelligence. Lecture notes in computer science (Vol. 2821, pp. 135–148). Berlin: Springer.

  • Leonelli, S. (2010). Documenting the emergence of bio-ontologies: Or, why researching bioinformatics requires HPSSB. History and Philosophy of the Life Sciences,32(1), 105–125.

    Google Scholar 

  • Leonelli, S. (2012). Classificatory theory in data-intensive science: The case of open biomedical ontologies. International Studies in the Philosophy of Science,26(1), 47–65.

    Article  Google Scholar 

  • Leonelli, S. (2013). Integrating data to acquire new knowledge: Three modes of integration in plant science. Studies in the History and Philosophy of Biological and Biomedical Sciences,44(4), 503–514.

    Article  Google Scholar 

  • Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Leonelli, S., Diehl, A. D., Christie, K. R., Harris, M. A., & Lomax, J. (2011). How the gene ontology evolves. BMC Bioinformatics,12(1), 325.

    Article  Google Scholar 

  • Lepage, D., Vaidya, G., & Guralnick, R. (2014). Avibase—A database system for managing and organizing taxonomic concepts. ZooKeys,420(420), 117–135.

    Article  Google Scholar 

  • Lord, P., & Stevens, R. (2010). Adding a little reality to building ontologies for biology. PLoS ONE,5(9), e12258.

    Article  Google Scholar 

  • Maojo, V., Crespo, J., García-Remesal, M., de la Iglesia, D., Perez-Rey, D., & Kulikowski, C. (2011). Biomedical ontologies: Toward scientific debate. Methods of Information in Medicine,50(3), 203–216.

    Article  Google Scholar 

  • Merrill, G. H. (2010a). Ontological realism: Methodology or misdirection? Applied Ontology,5(2), 79–108.

    Article  Google Scholar 

  • Merrill, G. H. (2010b). Realism and reference ontologies: Considerations, reflections and problems. Applied Ontology,5, 189–221.

    Article  Google Scholar 

  • Millerand, F., Ribes, D., Baker, K. S., & Bowker, G. C. (2013). Making an issue out of a standard: Storytelling practices in a scientific community. Science, Technology and Human Values,38(1), 7–43.

    Article  Google Scholar 

  • Minelli, A. (2017). Grey nomenclature needs rules. Ecologica Montenegrina,7, 654–666.

    Google Scholar 

  • Müller-Wille, S. (2017). Names and numbers: ‘Data’ in classical natural history, 1758–1859. Osiris,32(1), 109–128.

    Article  Google Scholar 

  • Müller-Wille, S., & Charmantier, I. (2012). Natural history and information overload: The case of Linnaeus. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,43(1), 4–15.

    Article  Google Scholar 

  • Mungall, C. J. (2019). Never mind the logix: Taming the semantic anarchy of mappings in ontologies. Douroucouli.wordpress.com. Retrieved May 26 from https://douroucouli.wordpress.com/2019/05/27/never-mind-the-logix-taming-the-semantic-anarchy-of-mappings-in-ontologie/.

  • NatureServe. (2019). Methodology and guidelines. Help.natureserve.org. Retrieved August 20 from http://help.natureserve.org/biotics/#Methodology/MethodologyGuidelines.htm.

  • Otero-Cerdeira, L., Rodríguez-Martínez, F. J., & Gómez-Rodríguez, A. (2015). Ontology matching: A literature review. Expert Systems with Applications,42(2), 949–971.

    Article  Google Scholar 

  • Patterson, D., Cooper, J., Kirk, P., Pyle, R., & Remsen, D. (2010). Names are key to the big new biology. Trends in Ecology & Evolution,25(12), 686–691.

    Article  Google Scholar 

  • Pesquita, C., Faria, D., Stroe, C., Santos, E., Cruz, I. F., & Couto, F. M. (2013). What’s in a ‘Nym’? Synonyms in biomedical ontology matching. In The semantic webISWC 2013. Lecture Notes in Computer Science (Vol. 8218, pp. 526–541). Berlin: Springer.

  • Radford, A. E., Ahles, H. E., & Bell, C. R. (1968). Manual of the vascular flora of the Carolinas. Chapel Hill, NC: University of North Carolina Press.

    Google Scholar 

  • Remsen, D. (2016). The use and limits of scientific names in biological informatics. ZooKeys,550(4), 207–223.

    Article  Google Scholar 

  • Seltmann, K., Austin, A., & Jennings, J. (2012). A hymenopterists’ guide to the Hymenoptera anatomy ontology: Utility, clarification, and future directions. Journal of Hymenoptera Research,27(2), 67–88.

    Google Scholar 

  • Seppälä, S., Smith, B., & Ceusters, W. (2014). Applying the realism-based ontology-versioning method for tracking changes in the basic formal ontology. In P. Garbacz & O. Kutz (Eds.), Formal ontology in information systems (pp. 227–240). Amsterdam: IOS Press.

    Google Scholar 

  • Smith, B. (2003). The logic of biological classification and the foundations of biomedical ontology. In Invited papers from the 10th international conference in logic methodology and philosophy of science, Oviedo, Spain (pp. 19–25).

  • Smith, B. (2004). Beyond concepts: Ontology as reality representation. In V. Achille & L. Vieu (Eds.), Proceedings of FOIS 2004 international conference on formal ontology and information systems (pp. 73–84). Fairfax, VA: IOS Press.

    Google Scholar 

  • Smith, B. (2008). New desiderata for biomedical terminologies. In K. Munn & B. Smith (Eds.), Applied ontology: An introduction (pp. 83–107). Boston: De Gruyter.

    Google Scholar 

  • Smith, B. (2009). Biometaphysics. In R. Le Poidevin, P. Simons, A. McGonigal, & R. Cameron (Eds.), The Routledge companion to metaphysics (pp. 537–544). London: Routledge.

    Google Scholar 

  • Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al. (2007). The OBO foundry: Coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology,25(11), 1251–1255.

    Article  Google Scholar 

  • Smith, B., & Ceusters, W. (2006). HL7 RIM: An incoherent standard. Studies in Health Technology and Informatics,124, 133–138.

    Google Scholar 

  • Smith, B., & Ceusters, W. (2010). Ontological realism: A methodology for coordinated evolution of scientific ontologies. Applied Ontology,5(3–4), 139–188.

    Article  Google Scholar 

  • Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., et al. (2005). Relations in biomedical ontologies. Genome Biology,6(5), R46.

    Article  Google Scholar 

  • Sojic, A., & Kutz, O. (2012). Open biomedical pluralism: Formalising knowledge about breast cancer phenotypes. Journal of Biomedical Semantics,3(Suppl 2), S3.

    Article  Google Scholar 

  • Sterner, B. W. (2018). Review of Sabina Leonelli’s data-centric biology: A philosophical study. Philosophy of Science,85(3), 540–550.

    Article  Google Scholar 

  • Sterner, B. W., & Franz, N. M. (2017). Taxonomy for humans or computers? Cognitive pragmatics for big data. Biological Theory,12(2), 99–111.

    Article  Google Scholar 

  • Sterner, B. W., & Lidgard, S. (2014). The normative structure of mathematization in systematic biology. Studies in the History and Philosophy of Biological and Biomedical Sciences,46, 44–54.

    Article  Google Scholar 

  • Sterner, B. W., & Lidgard, S. (2018). Moving past the systematics wars. Journal of the History of Biology,51, 31–67.

    Article  Google Scholar 

  • The Gene Ontology Consortium. (2017). Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Research,45(D1), D331–D338.

    Article  Google Scholar 

  • The OBO Foundry. (2018). Principle: Maintenance. Obofoundry.org. Retrieved September 22 from http://www.obofoundry.org/principles/fp-016-maintenance.html.

  • Vaidya, G., Lepage, D., & Guralnick, R. (2018). The tempo and mode of the taxonomic correction process: How taxonomists have corrected and recorrected North American bird species over the last 127 years. PLoS ONE,13(4), e0195736. https://doi.org/10.1371/journal.pone.0195736.

    Article  Google Scholar 

  • Vogt, L. (2011). Signs and terminology: Science caught between language and perception. Bionomina,4, 1–41.

    Article  Google Scholar 

  • Vogt, L. (2017). Assessing similarity: On homology, characters, and the need for a semantic approach to non-evolutionary comparative homology. Cladistics,33, 513–539.

    Article  Google Scholar 

  • Wilkins, J. S. (2009). Species: A history of the idea. Berkeley, CA: University of California Press.

    Google Scholar 

  • Witteveen, J. (2015). Naming and contingency: The type method of biological taxonomy. Biology and Philosophy,30, 569–586.

    Article  Google Scholar 

  • Witteveen, J. (2016). Suppressing synonymy with a homonym: The emergence of the nomenclatural type concept in nineteenth century natural history. Journal of the History of Biology,49(1), 135–189.

    Article  Google Scholar 

  • Witteveen, J. (2018). Objectivity, historicity, taxonomy. Erkenntnis,83(3), 445–463.

    Article  Google Scholar 

  • Yoder, M. J., Mikó, I., Seltmann, K. C., Bertone, M. A., & Deans, A. R. (2010). A gross anatomy ontology for Hymenoptera. PLoS ONE,5(12), e15991. https://doi.org/10.1371/journal.pone.0015991.

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks to the editors for proposing and organizing the special issue on Taxonomy as an Information Science. Their comments and the referees’ responses both helped substantially improve the final text. This work was also supported by the McDonnell Foundation via the Marine Biological Laboratory and ASU’s Special Initiative Fund for Biodiversity Data Science.

Funding

Funding was provided by Division of Social and Economic Sciences (Grant No. STS 1827993), Netherlands Organisation for Scientific Research (Grant No. 275-20-060) and National Science Foundation (Grant Nos. SES-1827993, DEB-1754731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beckett Sterner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterner, B., Witteveen, J. & Franz, N. Coordinating dissent as an alternative to consensus classification: insights from systematics for bio-ontologies. HPLS 42, 8 (2020). https://doi.org/10.1007/s40656-020-0300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-020-0300-z

Keywords

Navigation