Alderson, G. L. H., & Plastow, G. S. (2004). Use of DNA markers to assist with product traceability and pedigree analysis and their role in breed conservation. Animal Genetic Resources, 35, 1–7.
Google Scholar
Archibald, A. L. (1986). A molecular genetic approach to the porcine stress syndrome. In P. V. Tarrant, G. Eikelenboom, & G. Moni (Eds.), Evaluation and control of meat quality in pigs (pp. 343–357). Dordrecht: Martinus Nijhoff Publishers.
Google Scholar
Archibald, A. L. (1998). Comparative genome mapping—the livestock perspective. In A. J. Clark (Ed.), Animal breeding: Technology for the 21st century (pp. 137–164). Amsterdam: Harwood Academic Publishers.
Google Scholar
Archibald, A. L., Haley, C. S., Brown, J. F., Couperwhite, S., McQueen, H. A., Nicholson, D., et al. (1995). The PiGMaP consortium linkage map of the pig (Sus scrofa). Mammalian Genome, 6, 157–175.
Google Scholar
Archibald, A. L., & Imlah, P. (1985). The halothane sensitivity locus and its linkage relationships. Animal Blood Groups and Biochemical Genetics (Special Issue), 4, 253–335.
Google Scholar
Benavides, F. J., & Guénet, J.-L. (2012). Mouse genomics. In H. J. Hedrich (Ed.), The laboratory mouse (2nd ed., pp. 57–90). London: Elsevier.
Google Scholar
Beurton, P. J., Falk, R., & Rheinberger, H.-J. (Eds.). (2000). The concept of the gene in development and evolution: Historical and epistemological perspectives. Cambridge: Cambridge University Press.
Google Scholar
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.
Google Scholar
Bulmer, M. G. (1980). The mathematical theory of quantitative genetics. Oxford: Clarendon Press.
Google Scholar
Courreau, J.-F., Sellier, P., Boulard, J., Breton, T., Goullieux, P., & Guérin, G. (1985). Blood markers (Phi and Pgd) and halothane sensitivity in the French Landrace pig breed. Journées de la Recherche Porcine en France, 34, 364.
Google Scholar
Dalens, M., & Runavot, J.-P. (1993). Test moléculaire pour le dépistage du gène de la sensibilité à l’halothane chez le porc. Techni-Porc, 16, 17–20.
Google Scholar
Davies, W., Harbitz, I., Fries, R., Stranzinger, G., & Hauge, J. G. (1988). Porcine malignant hyperthermia carrier detection and chromosomal assignment using a linked probe. Animal Genetics, 19(2), 203–212.
Google Scholar
Dekkers, J. C. M., & van der Werf, J. H. J. (2007). Strategies, limitations and opportunities for marker-assisted selection in livestock. In E. P. Guimarães, J. Ruane, B. D. Scherf, A. Sonnino, & J. D. Dargie (Eds.), Marker-assisted selection: Current status and future perspectives in crops, livestock, forestry and fish (pp. 167–184). Rome: Food and Agriculture Organization of the United Nations.
Google Scholar
Derry, M. E. (2015). Masterminding nature: The breeding of animals, 1750–2010. Toronto: University of Toronto Press.
Google Scholar
Erbe, M., Hayes, B. J., Matukumalli, L. K., Goswami, S., Bowman, P. J., Reich, C. M., et al. (2012). Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of Dairy Science, 95(7), 4114–4129.
Google Scholar
Falk, R. (2009). Genetic analysis: A history of genetic thinking. Cambridge: Cambridge University Press.
Google Scholar
Fox Keller, E. (2000). The century of the gene. Cambridge, MA: Harvard University Press.
Google Scholar
Fujii, J., Otsu, K., Zorzato, F., de Leon, S., Khanna, V. K., Weiler, J. E., et al. (1991). Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 253(5018), 448–451.
Google Scholar
García-Sancho, M. (2015). Animal breeding in the age of biotechnology: The investigative pathway behind the cloning of Dolly the sheep. History and Philosophy of the Life Sciences, 37(3), 282–304.
Google Scholar
Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge: Cambridge University Press.
Google Scholar
Gulcher, J. (2012). Microsatellite markers for linkage and association studies. Cold Spring Harbor Protocols. https://doi.org/10.1101/pdb.top068510.
Article
Google Scholar
Haley, C., & Visscher, P. M. (1998). Strategies to utilize marker-quantitative trait loci associations. Journal of Dairy Science, 81(2), 85–97.
Google Scholar
Harper, P. S. (2008). A short history of medical genetics. Oxford: Oxford University Press.
Google Scholar
Hawken, R. J., Murtaugh, J., Flickinger, G. H., Yerle, M., Robic, A., Milan, D., et al. (1999). A first-generation porcine whole-genome radiation hybrid map. Mammalian Genome, 10, 824–830.
Google Scholar
Hill, W. G. (2014). Applications of population genetics to animal breeding, from Wright, Fisher and Lush to genomic prediction. Genetics, 196, 1–16.
Google Scholar
Holmes, T. (2017). The wild type as concept and in experimental practice: A history of its role in classical genetics and evolutionary theory. Studies in History and Philosophy of Biological and Biomedical Sciences, 63, 15–27.
Google Scholar
Jeon, J.-T., Carlborg, Ö., Törnsten, A., Giuffra, E., Amarger, V., Chardon, P., et al. (1999). A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 21, 157–158.
Google Scholar
Johannsen, W. (1909). Elemente der Exakten Erblichkeitslehre. Jena: Gustav Fischer.
Google Scholar
Kaufmann, A. (2004). Mapping the human genome at Généthon laboratory: The French Muscular Dystrophy Association and the politics of the gene. In J.-P. Gaudillière & H.-J. Rheinberger (Eds.), From molecular genetics to genomics: The mapping cultures of twentieth-century genetics (pp. 129–157). London: Routledge.
Google Scholar
Knol, E. F., Nielsen, B., & Knap, P. W. (2016). Genomic selection in commercial pig breeding. Animal Frontiers, 6(1), 15–22.
Google Scholar
Kohler, R. E. (1994). Lords of the fly: Drosophila genetics and the experimental life. Chicago, IL: The University of Chicago Press.
Google Scholar
Lande, R., & Thompson, R. (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124, 743–756.
Google Scholar
Le Roy, P., Naveau, J., Elsen, J.-M., & Sellier, P. (1990). Evidence for a new major gene influencing meat quality in pigs. Genetics Research, 55(1), 33–40.
Google Scholar
Legault, C., Gruand, J., Lebost, J., Garreau, H., Ollivier, L., Messer, L. A., et al. (1996). Fréquence et effet sur la prolificité du gène ESR dans deux lignées Large White en France. Journées de la Recherche Porcine, 28, 9–14.
Google Scholar
Lindee, M. S. (2005). Moments of truth in genetic medicine. Baltimore, MD: Johns Hopkins University Press.
Google Scholar
Lowe, J. W. E. (in review). Ephemerality and indispensability: Establishing the Roslin Institute in international networks of pig genomics research. The British Journal for the History of Science (submitted to).
Lowe, J. W. E. (2018). Sequencing through thick and thin: Historiographical and philosophical implications. Studies in History and Philosophy of Biological and Biomedical Sciences, 72, 10–27.
Google Scholar
MacLennan, D. H., Duff, C., Zorzato, F., Fujii, J., Phillips, M., Korneluk, R. G., et al. (1990). Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature, 343, 559–561.
Google Scholar
Mariani, P. (1999). QTL identification and marker assisted selection: New solutions to old problems. In G. Piva, G. Bertoni, F. Masoero, P. Bani, & L. Calamari (Eds.), Recent progress in animal production science: Proceedings of the A.S.P.A. XIII Congress, Piacenza, June 21–24, 1999 (pp. 109–124). Milan: FrancoAngeli.
Google Scholar
McCarthy, T. V., Healy, J. M. S., Heffron, J. J. A., Lehane, M., Deufel, T., Lehmann-Horn, F., et al. (1990). Localization of the malignant hyperthermia susceptibility locus to human chromosome 19ql2–13.2. Nature, 343, 562–564.
Google Scholar
Meuwissen, T. (2007). Genomic selection: Marker assisted selection on a genome wide scale. Journal of Animal Breeding and Genetics, 124, 321–322.
Google Scholar
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.
Google Scholar
Morange, M. (M. Cobb, Transl.) (2000). A history of molecular biology. Cambridge, MA: Harvard University Press.
Moss, L. (2003). What genes can’t do. Cambridge, MA: The MIT Press.
Google Scholar
Müller-Wille, S. (2018). Making and unmaking populations. Historical Studies in the Natural Sciences, 48(5), 604–615.
Google Scholar
Müller-Wille, S., & Rheinberger, H.-J. (2012). A cultural history of heredity. Chicago, IL: The University of Chicago Press.
Google Scholar
Myelnikov, D. (2017). Cuts and the cutting edge: British science funding and the making of animal biotechnology in 1980s Edinburgh. British Journal for the History of Science, 50(4), 701–728.
Google Scholar
Nezer, C., Moreau, L., Brouwers, B., Coppieters, W., Detilleux, J., Hanset, R., et al. (1999). An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics, 21, 155–156.
Google Scholar
O’Brien, P. J., & Ball, R. O. (2013). Porcine stress syndrome. In B. E. Straw, J. J. Zimmerman, S. D’Allaire, & D. J. Taylor (Eds.), Diseases of swine (9th ed., pp. 945–964). London: Blackwell.
Google Scholar
O’Brien, S. J. (1991). Mammalian genome mapping: Lessons and prospects. Current Opinion in Genetics & Development, 1(1), 105–111.
Google Scholar
Ollivier, L., Sellier, P., Monin, G., Dando, P., Vernin, P., & Talmant, A. (1975). Déterminisme génétique du syndrome d’hyperthermie maligne chez le porc de piétrain. Annales de génétique et de sélection animale, 7(2), 159–166.
Google Scholar
Otsu, K., Khanna, V. K., Archibald, A. L., & MacLennan, D. H. (1991). Cosegregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross families. Genomics, 11, 744–750.
Google Scholar
Papatryfon, I., Zika, E., Wolf, O., Gómez-Barbero, M., Stein, A. J., & Bock, A.-K. (2008). Consequences, opportunities and challenges of modern biotechnology for Europe. The analysis report: Contributions of modern biotechnology to European policy objectives. Luxembourg: Office for Official Publications of the European Communities.
Google Scholar
Pérez-Enciso, M., Forneris, N., de los Campos, G., & Legarra, A. (2017). Evaluating sequence-based genomic prediction with an efficient new simulator. Genetics, 205, 939–953.
Google Scholar
Provine, W. B. (1971). The origins of theoretical population genetics. Chicago, IL: The University of Chicago Press.
Google Scholar
Rajagopalan, R. M., & Fujimura, J. H. (2018). Variations on a chip: Technologies of difference in human genetics research. Journal of the History of Biology, 51, 841–873.
Google Scholar
Ramos, A. M., Crooijmans, R. P. M. A., Affara, N. A., Amaral, A. J., Archibald, A. L., Beever, J. E., et al. (2009). Design of a high density snp genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE, 4(8), e6524.
Google Scholar
Rasmussen, N. (2014). Gene jockeys: Life science and the rise of biotech enterprise. Baltimore, MD: Johns Hopkins University Press.
Google Scholar
Rettenberger, G., Klett, C., Zechner, U., Kunz, J., Vogel, W., & Hameister, H. (1995). Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics, 26, 372–378.
Google Scholar
Rheinberger, H.-J., & Müller-Wille, S. (2000). Gene concepts. In S. Sarkar & A. Plutynski (Eds.), A companion to the philosophy of biology (pp. 3–21). Oxford: Wiley-Blackwell.
Google Scholar
Rheinberger, H.-J., & Müller-Wille, S. (2017). The gene: From genetics to postgenomics. Chicago, IL: The University of Chicago Press.
Google Scholar
Rothschild, M. F., Hu, Z.-L., & Jiang, Z. (2007). Advances in QTL mapping in pigs. International Journal of Biological Sciences, 3(3), 192–197.
Google Scholar
Rothschild, M. F., & Plastow, G. S. (2002). Development of a genetic marker for litter size in the pig: A case study. In M. F. Rothschild & S. Newman (Eds.), Intellectual property rights in animal breeding and genetics (pp. 179–196). New York, NY: CABI Publishing.
Google Scholar
Russell, E. S. (1989). Sewall Wright’s contributions to physiological genetics and to inbreeding theory and practice. Annual Review of Genetics, 23, 1–18.
Google Scholar
Sboner, A., Mu, X. J., Greenbaum, D., Auerbach, R. K., & Gerstein, M. B. (2011). The real cost of sequencing: Higher than you think! Genome Biology, 12, 125.
Google Scholar
Schaffner, K. F. (1993). Discovery and explanation in biology and medicine. Chicago, IL: The University of Chicago Press.
Google Scholar
Schook, L. B., Beever, J. E., Clamp, P. A., Lewin, H. A., & McLaren, D. G. (1990). Status of the pig gene map. In J. E. Womack (Ed.), Mapping the genomes of agriculturally important animals (pp. 123–130). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Google Scholar
Tait-Burkard, C., Doeschl-Wilson, A., McGrew, M. J., Archibald, A. L., Sang, H. M., Houston, R. D., Whitelaw, C. B, & Watson, M. (2018). Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 19, 204.
Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(6), 6463–6471.
Google Scholar
Tóth, G., Gáspári, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 10, 967–981.
Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Homes, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407–4414.
Google Scholar
Waters, C. K. (1994). Genes made molecular. Philosophy of Science, 61(2), 163–185.
Google Scholar
Waters, C. K. (2003). What was classical genetics? Studies in History and Philosophy of Science Part A, 35(4), 783–809.
Google Scholar
Webb, A. J. (1980). The halothane test—A practical method of eliminating porcine stress syndrome. The Veterinary Record, 106, 410–412.
Google Scholar
Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.
Google Scholar
Weber, J. L. (1990). Human DNA polymorphisms and methods of analysis. Current Opinion in Biotechnology, 1(2), 166–171.
Google Scholar
Weber, J. L., & May, P. E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics, 44, 388–396.
Google Scholar
Yerle, M., Pinton, P., Robic, A., Alfonso, A., Palvadeau, Y., Delcros, C., et al. (1998). Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenetics and Cell Genetics, 82, 182–188.
Google Scholar
Yi, D. (2015). The recombinant university: Genetic engineering and the emergence of stanford biotechnology. Chicago, IL: The University of Chicago Press.
Google Scholar