Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, et al. Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos. 2006;111, D05109.
Article
Google Scholar
Allan RP, Soden BJ. Atmospheric warming and the amplification of precipitation extremes. Science. 2008;321:1481–4.
Article
CAS
Google Scholar
Allan RP, Soden BJ, John VO, Ingram W, Good P. Current changes in tropical precipitation. Environ Res Lett. 2010;5:025205.
Article
Google Scholar
Allen MR, Ingram WJ. Constraints on future changes in climate and the hydrologic cycle. Nature. 2002;419:224–32.
Article
CAS
Google Scholar
Arnold NP, Kuang Z, Tziperman E. Enhanced MJO-like variability at high SST. J Clim. 2013;26:988–1001.
Article
Google Scholar
Asadieh B, Krakauer NY. Global trends in extreme precipitation: climate models vs. observations. Hydrol Earth Syst Sci. 2015;19:877–91.
Attema JJ, Loriaux JM, Lenderink G. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model. Environ Res Lett. 2014;9:014003.
Article
Google Scholar
Ban N, Schmidli J, Schär C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos. 2014;119:7889–907. This paper demonstrates an improvement in the simulation of midlatitude summer precipitation extremes through use of a cloud-system resolving model.
Article
Google Scholar
Ban N, Schmidli J, Schär C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys Res Lett. 2015;42:1165–72.
Article
Google Scholar
Berg P, Moseley C, Haerter JO. Strong increase in convective precipitation in response to higher temperatures. Nat Geosci. 2013;6:181–5.
Article
CAS
Google Scholar
Betts AK, Harshvardhan. Thermodynamic constraint on the cloud liquid water feedback in climate models. J Geophys Res. 1987;92:8483–5.
Caballero R, Huber M. Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys Res Lett. 2010;37, L11701.
Article
Google Scholar
Catto JL, Pfahl S. The importance of fronts for extreme precipitation. J Geophys Res Atmos. 2013;118:10,791–10,801. This paper quantifies the importance of fronts and cyclones for precipitation extremes.
Changnon SA, Changnon D. Long-term fluctuations in hail incidences in the United States. J Clim. 2000;13:658–64.
Article
Google Scholar
Changnon SA, Changnon D, Karl TR. Temporal and spatial characteristics of snowstorms in the contiguous United States. J Appl Meteorol Climatol. 2006;45:1141–55.
Article
Google Scholar
Changnon SA, Karl TR. Temporal and spatial variations of freezing rain in the contiguous United States: 1948-2000. J Appl Meteorol. 2003;42:1302–15.
Article
Google Scholar
Chen CT, Knutson T. On the verification and comparison of extreme rainfall indices from climate models. J Clim. 2008;21:1605–21.
Article
Google Scholar
Chen G, Ming Y, Singer ND, Lu J. Testing the Clausius-Clapeyron constraint on the aerosol-induced changes in mean and extreme precipitation. Geophys Res Lett. 2011;38, L04807.
Google Scholar
Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, et al. Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci. 2014;7:627–37.
Article
CAS
Google Scholar
Dai A. Precipitation characteristics in eighteen coupled climate models. J Clim. 2006;19:4605–30.
Article
Google Scholar
Dettinger M. Climate change, atmospheric rivers, and floods in California—a multimodel analysis of storm frequency and magnitude changes. J Am Water Resour Assoc. 2011;47:514–23.
Article
Google Scholar
Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F. Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci. 2005;102:15,774–8.
Article
CAS
Google Scholar
Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos. 2013;118:2098–118.
Article
Google Scholar
Emori S, Brown SJ. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett. 2005;32, L17706.
Article
Google Scholar
Fischer EM, Knutti R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys Res Lett. 2014;41:547–54.
Article
Google Scholar
Gochis D, Schumacher R, Friedrich K, Doesken N, Kelsch M, Sun J, et al. The great Colorado flood of September 2013. Bull Am Meteorol Soc. 2015. doi:10.1175/BAMS-D-13-00241.1.
Google Scholar
Gordon HB, Whetton PH, Pittock AB, Fowler AM, Haylock MR. Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events. Clim Dyn. 1992;8:83–102.
Article
Google Scholar
Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN. Trends in intense precipitation in the climate record. J Clim. 2005;18:1326–50.
Article
Google Scholar
Haerter JO, Berg P. Unexpected rise in extreme precipitation caused by a shift in rain type? Nat Geosci. 2009;2:372–3.
Article
CAS
Google Scholar
Handmer J, Honda Y, Kundzewicz ZW, et al. Changes in impacts of climate extremes: human systems and ecosystems. In: Field CB, Barros V, Stocker TF, et al., editors. Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge: Cambridge Univ. Press; 2012. p. 231–90.
Hardwick Jones R, Westra S, Sharma A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett. 2010;37, L22805.
Article
Google Scholar
Herring SC, Hoerling MP, Peterson TC, Stott PA. Explaining extreme events of 2013 from a climate perspective. Bull Am Meteorol Soc. 2014;95:S1–S96.
Article
Google Scholar
Hilburn KA, Wentz FJ. Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). J Appl Meteorol. 2008;47:778–94.
Article
Google Scholar
Holton JR. An introduction to dynamic meteorology. 4th ed. London: Elsevier Academic Press; 2004.
Google Scholar
Kao SC, Ganguly AR. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J Geophys Res. 2011;116: D16,119. This paper presents intensity-duration-frequency curves in different climates in simulations with global climate models.
Kawazoe S, Gutowski Jr WJ. Regional, very heavy daily precipitation in NARCCAP simulations. J Hydrometeorol. 2013;14:1212–27.
Article
Google Scholar
Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Chang. 2014;4:570–6.
Article
Google Scholar
Kharin VV, Zwiers FW, Zhang X, Hegerl GC. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim. 2007;20:1419–44.
Article
Google Scholar
Kharin VV, Zwiers FW, Zhang X, Wehner M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang. 2013;119:345–57. This paper analyzes the changes in extremes in the most recent major intercomparison of global climate models.
Article
Google Scholar
Kidston J, Dean SM, Renwick JA, Vallis GK. A robust increase in the eddy length scale in the simulation of future climates. Geophys Res Lett. 2010;37, L03806.
Google Scholar
Kirshbaum DJ, Smith RB. Temperature and moist-stability effects on midlatitude orographic precipitation. Q J Roy Meteorol Soc. 2008;134:1183–99.
Article
Google Scholar
Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, et al. Tropical cyclones and climate change. Nat Geosci. 2010;3:157–63.
Article
CAS
Google Scholar
Kooperman GJ, Pritchard MS, Somerville RC. The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. J Adv Model Earth Syst. 2014;6:859–82.
Article
Google Scholar
Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, et al. Monitoring and understanding trends in extreme storms: state of knowledge. Bull Am Meteorol Soc. 2013;94:499–514.
Article
Google Scholar
Lau KM, Zhou YP, Wu HT. Have tropical cyclones been feeding more extreme rainfall? J Geophys Res. 2008;113, D23113.
Article
Google Scholar
Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ. Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett. 2011;38, L23803.
Article
Google Scholar
Lenderink G, van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci. 2008;1:511–4.
Article
CAS
Google Scholar
Lenderink G, Mok HY, Lee TC, van Oldenborgh GJ. Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol Earth Syst Sci. 2011;15:3033–41.
Article
Google Scholar
Li F, Rosa D, Collins WD, Wehner MF. Super-parameterization: a better way to simulate regional extreme precipitation? J Adv Model Earth Syst. 2012;4:M04002.
Article
Google Scholar
Loriaux JM, Lenderink G, de Roode SR, Siebesma AP. Understanding convective extreme precipitation scaling using observations and an entraining plume model. J Atmos Sci. 2013;70:3641–55. This paper examines the scaling of subdaily precipitation extremes with temperature in observations and a simple plume model of convection.
Article
Google Scholar
Lu J, Leung LR, Yang Q, Chen G, Collins WD, Li F, et al. The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions. Geophys Res Lett. 2014;41:2971–8.
Article
Google Scholar
Lute AC, Abatzoglou JT, Hegewisch KC. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour Res. 2015;51:960–72.
Article
Google Scholar
Min SK, Zhang X, Zwiers FW, Hegerl GC. Human contribution to more-intense precipitation extremes. Nature. 2011;470:378–81. This paper provides evidence for an anthropogenic contribution to observed changes in precipitation extremes.
Article
CAS
Google Scholar
Mishra V, Wallace JM, Lettenmaier DP. Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys Res Lett. 2012;39, L16403.
Article
Google Scholar
Muller C. Impact of convective organization on the response of tropical precipitation extremes to warming. J Clim. 2013;26:5028–43. This paper compares the response of precipitation extremes to warming in idealized simulations of organized and disorganized convection.
Article
Google Scholar
Muller CJ, O’Gorman PA, Back LE. Intensification of precipitation extremes with warming in a cloud resolving model. J Clim. 2011;24:2784–800.
Article
Google Scholar
O’Gorman PA. Understanding the varied response of the extratropical storm tracks to climate change. Proc Natl Acad Sci. 2010;107:19,176–80.
Article
Google Scholar
O’Gorman PA. Sensitivity of tropical precipitation extremes to climate change. Nat Geosci. 2012;5:697–700.
Article
Google Scholar
O’Gorman PA. Contrasting responses of mean and extreme snowfall to climate change. Nature. 2014;512:416–8. This paper introduces a theory for the response of snowfall extremes to climate change.
Article
Google Scholar
O’Gorman PA, Muller CJ. How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate-change simulations? Environ Res Lett. 2010;5:025,207.
Article
Google Scholar
O’Gorman PA, Schneider T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci. 2009;106:14,773–7. This paper quantifies the physical contributions to changes in precipitation extremes in climate-model simulations.
Article
Google Scholar
O’Gorman PA, Schneider T. Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J Clim. 2009;22:5676–85.
Article
Google Scholar
Otto FEL, Rosier SM, Allen MR, Massey NR, Rye CJ, Quintana JI. Attribution analysis of high precipitation events in summer in England and Wales over the last decade. Clim Chang. 2014. doi:10.1007/s10584-014-1095-2.
Google Scholar
Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature. 2011;470:382–5. This paper assesses the anthropogenic contribution to a specific extreme precipitation and flooding event.
Article
CAS
Google Scholar
Pall P, Allen MR, Stone DA. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn. 2007;28:351–63.
Article
Google Scholar
Pendergrass AG, Hartmann DL. Changes in the distribution of rain frequency and intensity in response to global warming. J Clim. 2014;27:8372–83.
Article
Google Scholar
Pendergrass AG, Hartmann DL. Two modes of change of the distribution of rain. J Clim. 2014;27:8357–71.
Article
Google Scholar
Peters O, Deluca A, Corral A, Neelin JD, Holloway CE. Universality of rain event size distributions. J Stat Mech: Theor Exp. 2010;2010:P11030.
Article
Google Scholar
Pfahl P, Wernli H. Quantifying the relevance of cyclones for precipitation extremes. J Clim. 2012;25:6770–80.
Article
Google Scholar
Romps DM. Response of tropical precipitation to global warming. J Atmos Sci. 2011;68:123–38.
Article
Google Scholar
Rosa D, Collins WD. A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison. Geophys Res Lett. 2013;40:5999–6003.
Article
Google Scholar
Rossow WB, Mekonnen A, Pearl C, Goncalves W. Tropical precipitation extremes. J Clim. 2013;26:1457–66.
Article
Google Scholar
Shi X, Durran DR. Estimating the response of extreme precipitation over mid-latitude mountains to global warming. J Clim. 2015. doi:10.1175/JCLI-D-14-00750.1. This paper finds a different dynamical contribution to changes in precipitation extremes on the eastern and western slopes of a midlatitude mountain.
Google Scholar
Siler N, Roe G. How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys Res Lett. 2014;41:2606–13. This paper provides some physical understanding for different responses of orographic precipitation on the leeward and windward sides of mountains.
Article
Google Scholar
Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS. Precipitation extremes over the continental United States in a transient, high-resolution, ensemble climate model experiment. J Geophys Res Atmos. 2013;118:7063–86.
Article
Google Scholar
Singh MS, O’Gorman PA. Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys Res Lett. 2013;40:4398–403.
Article
Google Scholar
Singh MS, O’Gorman PA. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys Res Lett. 2014;41:6037–44.
Article
Google Scholar
Singh MS, O’Gorman PA. Increase in moist-convective updraft velocities with warming in radiative-convective equilibrium. Q J Roy Meteorol Soc. 2015; In revision.
Singleton A, Toumi R. Super-Clausius–Clapeyron scaling of rainfall in a model squall line. Q J Roy Meteorol Soc. 2013;139:334–9.
Article
Google Scholar
Smith TM, Reynolds RW, Peterson TC, Lawrimore J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J Clim. 2008;21:2283–96.
Article
Google Scholar
Stechmann SN, Neelin JD. First-passage-time prototypes for precipitation statistics. J Atmos Sci. 2014;71:3269–91.
Article
Google Scholar
Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas-Salcedo A, et al. Dreary state of precipitation in global models. J Geophys Res. 2010;115:D24211.
Sugiyama M, Shiogama H, Emori S. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Natl Acad Sci. 2010;107:571–5.
Article
CAS
Google Scholar
Sun Y, Solomon S, Dai A, Portmann RW. How often will it rain? J Clim. 2007;20:4801–18.
Article
Google Scholar
Trenberth KE. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Chang. 1999;42:327–39.
Article
Google Scholar
Trenberth KE, Dai A, Rasmussen RM, Parsons DB. The changing character of precipitation. Bull Am Meteorol Soc. 2003;84:1205–17.
Article
Google Scholar
Utsumi N, Seto S, Kanae S, Maeda EE, Oki T. Does higher surface temperature intensify extreme precipitation? Geophys Res Lett. 2011;38, L16708.
Article
Google Scholar
de Vries H, Lenderink G, van Meijgaard E. Future snowfall in western and central Europe projected with a high-resolution regional climate model ensemble. Geophys Res Lett. 2014;41:4294–9.
Article
Google Scholar
Wehner MF. Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections. Clim Dyn. 2013;40:59–80.
Article
Google Scholar
Wehner MF, Smith RL, Bala G, Duffy P. The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn. 2010;34:241–7.
Article
Google Scholar
Westra S, Alexander LV, Zwiers FW. Global increasing trends in annual maximum daily precipitation. J Clim. 2013;26:3904–18. This paper quantifies the dependence of precipitation extremes at different latitudes on global-mean temperature using a comprehensive observational dataset.
Article
Google Scholar
Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys. 2014;52:522–55.
Article
Google Scholar
Wilcox EM, Donner LJ. The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J Clim. 2007;20:53–69.
Article
Google Scholar
Zhang X, Hogg WD, Mekis É. Spatial and temporal characteristics of heavy precipitation events over Canada. J Clim. 2001;14:1923–36.
Article
Google Scholar
Zhang X, Wan H, Zwiers FW, Hegerl GC, Min SK. Attributing intensification of precipitation extremes to human influence. Geophys Res Lett. 2013;40:5252–7.
Article
Google Scholar