Skip to main content
Log in

Remarks on the three and two and a half dimensional Hall-magnetohydrodynamics system: deterministic and stochastic cases

  • RESEARCH
  • Published:
Complex Analysis and its Synergies Aims and scope Submit manuscript

Abstract

The Hall-magnetohydrodynamics system has a long history of various applications in physics and engineering, in particular magnetic reconnection, star formation and the study of the sun. Mathematically, the additional Hall term elevates the level of non-linearity to the quasi-linear type while similar systems of equations such as the Navier–Stokes equations, as well as the viscous and magnetically diffusive magnetohydrodynamics system are of the semi-linear type. Consequently, the mathematical analysis on the Hall-magnetohydrodynamics system had been relatively absent for more than half a century, and only started seeing rapid developments in the last few years. In this manuscript, we survey recent progress on the mathematical analysis of the Hall-magnetohydrodynamics system, both in the deterministic and stochastic cases, elaborating on the structure of the Hall term. We list some remaining open problems, and discuss their difficulty. As a byproduct of our discussion, it is deduced that the two and a half dimensional Hall-magnetohydrodynamics system with viscous diffusion in the form of a Laplacian and the magnetic diffusion in the form of a fractional Laplacian with power \(\frac{3}{2}\) admits a unique smooth solution for all time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.-G.: Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinet. Relat. Models 4, 901–918 (2011)

    Article  MathSciNet  Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  3. Barbu, V., Da Prato, G.: Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations. Appl. Math. Optim. 56, 145–168 (2007)

    Article  MathSciNet  Google Scholar 

  4. Batchelor, G.K.: On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. Ser. A 201, 405–416 (1950)

    Article  MathSciNet  Google Scholar 

  5. Campos, L.M.B.C.: On hydromagnetic waves in atmospheres with application to the sun. Theoret. Comput. Fluid Dyn. 10, 37–70 (1998)

    Article  Google Scholar 

  6. Cao, C., Wu, J., Yuan, B.: The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J. Math. Anal. 46, 588–602 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256, 3835–3858 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chae, D., Schonbek, M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255, 3971–3982 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chae, D., Weng, S.: Singularity formation for the incompressible Hall-MHD equations without resistivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1009–1022 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chae, D., Wolf, J.: On partial regularity for the steady Hall magnetohydrodynamics system. Commun. Math. Phys. 339, 1147–1166 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chae, D., Wolf, J.: On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane. SIAM J. Math. Anal. 48, 443–469 (2016)

    Article  MathSciNet  Google Scholar 

  12. Chae, D., Degond, P., Liu, J.-G.: Wel-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 555–565 (2014)

    Article  MathSciNet  Google Scholar 

  13. Chae, D., Wan, R., Wu, J.: Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion. J. Math. Fluid Mech. 17, 627–638 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chandrasekhar, S.: The invariant theory of isotropic turbulence in magneto-hydrodynamics. Proc. R. Soc. Lond. Ser. A 204, 435–449 (1951)

    Article  MathSciNet  Google Scholar 

  15. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

    Article  MathSciNet  Google Scholar 

  16. Donato, S., Servidio, S., Dmitruk, P., Carbone, V., Shay, M.A., Cassak, P.A., Matthaeus, W.H.: Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence. Phys. Plasmas 19, 092307 (2012)

    Article  Google Scholar 

  17. Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global Cauchy problem of 2D generalized MHD equations. Monatsch. Math. 175, 127–131 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ferrario, B.: The B$\acute{\rm e}$nard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl. 4, 101–121 (1997)

    Article  Google Scholar 

  19. Ferrario, B.: Stochastic Navier–Stokes equations: analysis of the noise to have a unique invariant measure. Annali di Matematica Pura ed Applicata CLXXVI I, 331–347 (1999)

    Article  MathSciNet  Google Scholar 

  20. Flandoli, F.: Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 1, 403–423 (1994)

    Article  MathSciNet  Google Scholar 

  21. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    Article  MathSciNet  Google Scholar 

  22. Flandoli, F., Maslowski, B.: Ergodicity of the 2-D Navier–Stokes equation under random perturbations. Commun. Math. Phys. 171, 119–141 (1995)

    Article  MathSciNet  Google Scholar 

  23. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164, 993–1032 (2006)

    Article  MathSciNet  Google Scholar 

  24. Hairer, M., Mattingly, J.C.: Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36, 2050–2091 (2008)

    Article  MathSciNet  Google Scholar 

  25. Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD-systems. Phys. D 208, 59–72 (2005)

    Article  MathSciNet  Google Scholar 

  26. Jiu, Q., Zhao, J.: A remark on global regularity of 2D generalized magnetohydrodynamic equations. J. Math. Anal. Appl. 412, 478–484 (2014)

    Article  MathSciNet  Google Scholar 

  27. Jiu, Q., Zhao, J.: Global regularity of 2D generalized MHD equations with magnetic diffusion. Z. Angew. Math. Phys. 66, 677–687 (2015)

    Article  MathSciNet  Google Scholar 

  28. Kato, T.: Liapunov functions and monotonicity in the Navier–Stokes equation. In: Functional-Analytic Methods for Partial Differential Equations. Lecture Notes in Mathematics, vol. 1450, pp. 53–63 (1990)

    Google Scholar 

  29. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  30. Kim, J.U.: On the stochastic quasi-linear symmetric hyperbolic system. J. Differ. Equ. 250, 1650–1684 (2011)

    Article  MathSciNet  Google Scholar 

  31. Leray, J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  32. Lighthill, M.J., S, F.R.: Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Philos. Trans. R. Soc. Lond. Ser. A 252, 397–430 (1960)

    Article  MathSciNet  Google Scholar 

  33. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  34. Mattingly, J.C., Pardoux, É.: Malliavin calculus for the stochastic 2D Navier–Stokes equation. Commun. Pure Appl. Math. 17:1742–1790 (2006)

    Article  MathSciNet  Google Scholar 

  35. Miura, H., Hori, D.: Hall effects on local structures in decaying MHD turbulence. J. Plasma Fusion Res. Ser. 8, 73–76 (2009)

    Google Scholar 

  36. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  37. Tran, C.V., Yu, X., Zhai, Z.: On global regularity of 2D generalized magnetohydrodynamics equations. J. Differ. Equ. 254, 4194–4216 (2013)

    Article  MathSciNet  Google Scholar 

  38. Wardle, M.: Star formation and the Hall effect. Astrophys. Space Sci. 292, 317–323 (2004)

    Article  Google Scholar 

  39. Yamazaki, K.: Remarks on the global regularity of two-dimensional magnetohydrodynamics system with zero dissipation. Nonlinear Anal. 94, 194–205 (2014)

    Article  MathSciNet  Google Scholar 

  40. Yamazaki, K.: On the global regularity of two-dimensional generalized magnetohydrodynamics system. J. Math. Anal. Appl. 416, 99–111 (2014)

    Article  MathSciNet  Google Scholar 

  41. Yamazaki, K.: Stochastic Hall-magneto-hydrodynamics system in three and two and a half dimensions. J. Stat. Phys. 166, 368–397 (2017)

    Article  MathSciNet  Google Scholar 

  42. Yamazaki, K.: On the global regularity issue of the two-dimensional magnetohydrodynamics system with magnetic diffusion weaker than a Laplacian. Contemp. Math. (to appear)

  43. Yamazaki, K.: Second proof of the global regularity of the two-dimensional MHD system with full diffusion and arbitrary weak dissipation. Methods Appl. Anal. 25: 73–96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yamazaki, K.: Two examples on the property of the noise in the systems of equations of fluid mechanics. J. Comput. Appl. Math. (2018). https://doi.org/10.1016/j.cam.2018.09.025

    Article  Google Scholar 

  45. Yamazaki, K., Mohan, M.T.: Well-posedness of Hall-magnetohydrodynamics system forced by Lévy noise. Stoch. PDE Anal. Comput. (2018). https://doi.org/10.1007/s40072-018-0129-6

    Article  Google Scholar 

  46. Ye, Z., Xu, X.: Global regularity of two-dimensional incompressible generalized magnetohydrodynamics system. Nonlinear Anal. 100, 86–96 (2014)

    Article  MathSciNet  Google Scholar 

  47. Yuan, B., Bai, L.: Remarks on global regularity of 2D generalized MHD equations. J. Math. Anal. Appl. 413, 633–640 (2014)

    Article  MathSciNet  Google Scholar 

  48. Yudovich, V.: Non stationary flows of an ideal incompressible fluid. Zhurnal Vych Matematika 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

Download references

Author's contributions

The author expresses deep gratitude to the anonymous referees and the Editor for the valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Yamazaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following inequality is a standard product estimate:

Lemma 5.1

(e.g. Lemma A.2 [28]) Suppose that the spatial dimension is \({\mathbb{R}}^{N}\) for any \(N \ge 2.\) Let

$$f \in W^{\delta , p_{1}} \cap L^{q_{2}}, g \in W^{\delta , p_{2}} \cap L^{q_{1}}$$

where \(\delta \ge 0, 1< p_{k}< \infty , 1 < q_{k} \le \infty ,\) and

$$\frac{1}{p} = \frac{1}{p_{k}} + \frac{1}{q_{k}}$$

for both \(k = 1, 2.\) Then

$$||fg||_{{\dot{W}}^{\delta , p}} \lesssim ||f||_{{\dot{W}}^{\delta , p_{1}}}||g||_{L^{q_{1}}} + ||f||_{L^{q_{2}}} ||g||_{{\dot{W}}^{\delta , p_{2}}}.$$

We also recall the following Kato-Ponce commutator estimate:

Lemma 5.2

([29]) Suppose that the spatial dimension is \({\mathbb{R}}^{N}\) for any \(N \ge 2.\) Let fg be smooth such that \(\nabla f \in L^{p_{1}},\) \(\Lambda^{s-1}g \in L^{p_{2}},\) \(\Lambda^{s}f \in L^{p_{3}},\;g \in L^{p_{4}}\) where \(p_{2}, p_{3} \in (1, \infty )\) and \(s > 0.\) Moreover, suppose that \(p \in (1,\infty )\) satisfies

$$\frac{1}{p} = \frac{1}{p_{1}}+\frac{1}{p_{2}} = \frac{1}{p_{3}} + \frac{1}{p_{4}}.$$

Then

$$||\Lambda^{s}(fg) - f\Lambda^{s}g||_{L^{p}} \lesssim ||\nabla f||_{L^{p_{1}}}||\Lambda^{s-1}g||_{L^{p_{2}}} + ||\Lambda^{s}f||_{L^{p_{3}}}||g||_{L^{p_{4}}}.$$

Lemma 5.3

([39, Lemma 2.3]) Suppose that the spatial dimension is \({\mathbb{R}}^{2}.\) Let \(f \in L^{2}\cap H^{s},\quad s > 2\) satisfy \(\nabla \cdot f =0\) and \(\nabla \times f \in L^{\infty}.\) Then

$$||\nabla f||_{L^{\infty }} \lesssim ||f||_{L^{2}} + ||\nabla \times f||_{L^{\infty }} \log_{2}(2+ ||f||_{H^{s}}) + 1.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K. Remarks on the three and two and a half dimensional Hall-magnetohydrodynamics system: deterministic and stochastic cases. Complex Anal Synerg 5, 9 (2019). https://doi.org/10.1007/s40627-019-0033-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40627-019-0033-5

Keywords

Mathematics Subject Classification

Navigation