Skip to main content
Log in

Iron excess and nitrogen deprivation influence photosynthetic metabolism in grasses used for mineland rehabilitation

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

When planning rehabilitation in iron-ore-mining impacted areas, including species that not only tolerate excess metals but also show nutrient use efficiency is paramount. We evaluated how the interaction of nitrogen (N) deficit and high iron (Fe) supply may influence the photosynthetic and nutritional metabolisms of two iron-tolerant C4 species. Paspalum densum and Setaria parviflora were exposed to standard Hoagland’s nutrient solution (control); high Fe; N deficit; and N deficit and high Fe combined, all in nutrient solution. Under adequate N supply, Fe excess decreased N concentration in leaves of P. densum. Therefore, in P. densum, N deficit and high Fe combined increased Fe concentration in the leaves, damaging the chlorophylls, causing a decline in biomass and photochemical efficiency and activation of photoprotective mechanisms. On the other hand, despite biomass and photoprotection processes were not affected in S. parviflora, adequate N supply and high Fe increased Fe concentration in the iron plaque. Furthermore, chlorophyll degradation was higher in mature leaves of S. parviflora, which showed higher mobility of N in the leaves with a decline in photochemical efficiency. In both species, the high Fe treatment triggered diffusive limitations in photosynthesis and the adequate supply of N was crucial for optimal performance in their photochemical and carbon uptake mechanisms. Considering that in mined areas nutrient deficit and Fe excess are common, it is suggested that both grasses, but especially S. parviflora, can be used in rehabilitation plans for severely impoverished mined areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Bardy LR, Debiasi TV, Sanada K, Rondina ABL, Torezan JMD, Stolf-Moreira R, Bianchini E, Pimenta JA, Oliveira HC (2023) Effect of nitrogen addition to the soil on Atlantic forest tree seedlings. Forests 14(6):1111

    Article  Google Scholar 

  • Batty L, Baker A, Wheeler B, Curtis C (2000) The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Ann Bot 86(3):647–653

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Borlotti A, Vigani G, Zocchi G (2012) Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biol 12(1):1–15

    Article  Google Scholar 

  • Brown R, Wilson J (1983) Nitrogen response of Panicum species differing in CO2 fixation pathways. II. CO2 exchange characteristics 1. Crop Sci 23(6):1154–1159

    Article  Google Scholar 

  • Caldeira CF, Lima MO, Ramos SJ, Gastauer M (2021) Native amazonian canga grasses show distinct nitrogen growth responses in iron mining substrates. Plants 10(5):849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho JM, Ramos SJ, Furtini Neto AE, Gastauer M, Caldeira-Jr CF, Siqueira JO, Silva ML (2018) Influence of nutrient management on growth and nutrient use efficiency of two plant species for mineland revegetation. Restor Ecol 26(2):303–310

    Article  Google Scholar 

  • Chapin III FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11(1):233–260

    Article  Google Scholar 

  • Chow F (2012) Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. In: Najafpour M (ed) Applied photosynthesis. InTech, London, pp 105–120

    Google Scholar 

  • de Araújo TO, de Freitas-Silva L, Santana BVN, Kuki KN, Pereira EG, Azevedo AA, da Silva LC (2014) Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species. Environ Sci Pollut Res 21:2777–2784

    Article  Google Scholar 

  • de Araújo TO, de Freitas-Silva L, Santana BVN, Kuki KN, Pereira EG, Azevedo AA, da Silva LC (2015) Morphoanatomical responses induced by excess iron in roots of two tolerant grass species. Environ Sci Pollut Res 22:2187–2195. https://doi.org/10.1007/s11356-014-3488-1

    Article  CAS  Google Scholar 

  • de Araújo TO, Isaure M-P, Alchoubassi G, Bierla K, Szpunar J, Trcera N, Chay S, Alcon C, da Silva LC, Curie C (2020) Paspalum urvillei and Setaria parviflora, two grasses naturally adapted to extreme iron-rich environments. Plant Physiol Biochem 151:144–156

    Article  Google Scholar 

  • de Souza AE, Rios CO, de Araújo TO, Siqueira-Silva AI, Souza JP, Pereira EG (2021) Is a C4 tropical grass still an option in the revegetation of iron ore tailings in face of climate change? Theor Exp Plant Physiol 33(4):397–409

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Dobermann A, Fairhurst T (2001) Toxicidad de hierro en arroz. Informaciones agronómicas (Ecuador). (Abr 2001). 43:3–5

  • Donato VMTS, Andrade AGD, Souza ESD, França JGED, Maciel GA (2004) Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. Pesq Agrop Brasileira 39:1087–1093

    Article  Google Scholar 

  • Fernández-Marín B, Hernández A, Garcia-Plazaola JI, Esteban R, Míguez F, Artetxe U, Gómez-Sagasti MT (2017) Photoprotective strategies of Mediterranean plants in relation to morphological traits and natural environmental pressure: a meta-analytical approach. Front Plant Sci 8:1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Gastauer M, Souza Filho PWM, Ramos SJ, Caldeira CF, Silva JR, Siqueira JO, Furtini Neto AE (2019) Mine land rehabilitation in Brazil: goals and techniques in the context of legal requirements. Ambio 48(1):74–88

    Article  PubMed  Google Scholar 

  • Gastauer M, Caldeira CF, Ramos SJ, Trevelin LC, Jaffé R, Oliveira G, Vera MPO, Pires E, de Aguiar Santiago FL, Carneiro MAC (2020) Integrating environmental variables by multivariate ordination enables the reliable estimation of mineland rehabilitation status. J Environ Manage 256:109894

    Article  PubMed  Google Scholar 

  • Giljum S, Maus V, Kuschnig N, Luckeneder S, Tost M, Sonter LJ, Bebbington AJ (2022) A pantropical assessment of deforestation caused by industrial mining. Proc Natl Acad Sci 119(38):e2118273119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gins E, Motyleva S, Gins V, Kulikov I, Gins M (2022) Comparative analysis of carbohydrate metabolites in amaranth leaves of different age. J Breed Genet 54(4):897–907

    Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DL (1950) The water culture methods for growing plants without soil. Bulletin, California Agriculture Experiment Station, Berkeley 347:1–39

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43(6):1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Otte ML, Liu Y, Qin L, Tian X, Lu X, Jiang M, Zou Y (2018) Performance of iron plaque of wetland plants for regulating iron, manganese, and phosphorus from agricultural drainage water. Water 10(1):42

    Article  Google Scholar 

  • Jiang Q, Chen Z, Liu C, He T, Guo G, Gao R, Xu H, Li Y, Lu R, Huang J (2019) Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage. Acta Agriculturae Boreali-Sinica 34(1):148–155

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiol Biochem 151:486–499

    Article  CAS  PubMed  Google Scholar 

  • Kjeldahl J (1883) Neue methode zur bestimmung des stickstoffs in organischen körpern. Zeitschrift für Analytische Chemie 22(1):366–382

    Article  Google Scholar 

  • Kothari S, Cavender-Bares J, Bitan K, Verhoeven A, Wang R, Montgomery R, Gamon J (2018) Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56:455–467

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Lavres Junior J, Monteiro FA (2006) Diagnose nutricional de nitrogênio no capim-aruana em condições controladas. Rev Bras Ciênc Solo 30:829–837

    Article  Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53(370):773–787

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhu YG, Xia Y, Li Z, Ma Y (2006) Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Ann Appl Biol 149(3):305–312

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of cd by rice (Oryza sativa L) seedlings grown in soil. Sci Total Environ 394(2–3):361–368

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ma D, Zhang Z, Wang S, Du S, Deng X, Yin L (2019) Plant lipid remodeling in response to abiotic stresses. Environ Exp Bot 165:174–184

    Article  CAS  Google Scholar 

  • Liu C, Gong X, Wang H, Dang K, Deng X, Feng B (2020a) Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L) seedling. Plant Physiol Biochem 151:233–242

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang S, Deng X, Zhang Z, Yin L (2020b) Comprehensive evaluation of physiological traits under nitrogen stress and participation of linolenic acid in nitrogen-deficiency response in wheat seedlings. BMC Plant Biol 20:1–16

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira SD (1997) Avaliação do estado nutricional das plantas; princípios e aplicações, 2nd edn. Potafos, Piracicaba

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Spangfort M, Andersson B (1987) Light-absorption and electron‐transport balance between photosystem II and photosystem I in spinach chloroplasts. Photochem Photobiol 45(1):129–136

    Article  CAS  Google Scholar 

  • Nikolic M, Cesco S, Römheld V, Varanini Z, Pinton R (2007) Short-term interactions between nitrate and iron nutrition in cucumber. Funct Plant Biol 34(5):402–408

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PAD, Assis IRD, Dias LE, Silva IRD, Barbosa GMN, Teixeira RDS, Campos R (2020) Different N-fertilization sources affecting the native soil organic matter mineralization on technosols under iron ore tailing. Revista Brasileira de Ciência do Solo. https://doi.org/10.36783/18069657rbcs20200088

    Article  Google Scholar 

  • Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, Stopato CH, Almeida AM (2013) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201:81–92

    Article  PubMed  Google Scholar 

  • Pereira EG, Oliva MA, Siqueira-Silva AI, Rosado-Souza L, Pinheiro DT, Almeida AM (2014) Tropical rice cultivars from lowland and upland cropping systems differ in iron plaque formation. J Plant Nutr 37(9):1373–1394

    Article  CAS  Google Scholar 

  • Rios CO, Souza BC, Siqueira-Silva AI, Pereira EG (2017) Assessment of iron toxicity in tropical grasses with potential for revegetation of mined areas. Pol J Environ Stud 26:1643–1649

    Article  Google Scholar 

  • Rios CO, Siqueira-Silva AI, Pereira EG (2021) How does drought affect native grasses’ photosynthesis on the revegetation of iron ore tailings? Environ Sci Pollut Res 28:14797–14811

    Article  CAS  Google Scholar 

  • Rios CO, Pimentel PA, Živčák M, Brestič M, Pereira EG (2022) Can ecological strategies be explained by photochemical efficiency in ironstone outcrops vegetation? Plant Soil 480(1–2):105–120

    Article  CAS  Google Scholar 

  • Rios CO, Siqueira-Silva AI, Pereira EG (2023) Revegetation of mining-impacted sites with a tropical native grass: constraints of climate seasonality and trace-element accumulation. J Environ Manage 326:116655

    Article  CAS  PubMed  Google Scholar 

  • Rogers D, Setzler B, Chiu Y (2019) Using plant functional groups as a strategy for modeling carbon dynamics in grassland ecosystems. Adv Environ Stud 3(1):191–197

    Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants: II Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L) and Amaranthus retroflexus (L). Plant Physiol 84(3):959–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW (2018) Some like it hot: the physiological ecology of C4 plant evolution. Oecologia 187:941–966

    Article  PubMed  Google Scholar 

  • Sakuraba Y (2022) Molecular basis of nitrogen starvation-induced leaf senescence. Front Plant Sci 13:1013304

    Article  PubMed  PubMed Central  Google Scholar 

  • Santana BVN, de Araújo TO, Andrade GC, de Freitas-Silva L, Kuki KN, Pereira EG, Azevedo AA, da Silva LC (2014) Leaf morphoanatomy of species tolerant to excess iron and evaluation of their phytoextraction potential. Environ Sci Pollut Res 21:2550–2562

    Article  CAS  Google Scholar 

  • Schmitt MR, Edwards GE (1981) Photosynthetic capacity and nitrogen use efficiency of maize, wheat, and rice: a comparison between C3 and C4 photosynthesis. J Exp Bot 32(3):459–466

    Article  CAS  Google Scholar 

  • Siqueira-Silva AI, Rios CO, Pereira EG (2019) Iron toxicity resistance strategies in tropical grasses: the role of apoplastic radicular barriers. J Environ Sci 78:257–266

    Article  CAS  Google Scholar 

  • Sun X, Chen F, Yuan L, Mi G (2020) The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta 251:1–14

    Article  Google Scholar 

  • Valliere JM, Ruscalleda Alvarez J, Cross AT, Lewandrowski W, Riviera F, Stevens JC, Tomlinson S, Tudor EP, Wong WS, Yong JW (2022) Restoration ecophysiology: an ecophysiological approach to improve restoration strategies and outcomes in severely disturbed landscapes. Restor Ecol 30:e13571

    Article  Google Scholar 

  • Velikova V, Yordanov I, Adreva A (2000) Some antioxidant systems in acid rain treated bean plants; protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang S, Uddin MI, Tanaka K, Yin L, Shi Z, Qi Y, Mano J, Matsui K, Shimomura N, Sakaki T (2014) Maintenance of chloroplast structure and function by overexpression of the rice monogalactosyldiacylglycerol synthase gene leads to enhanced salt tolerance in tobacco. Plant Physiol 165(3):1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Baker A, Wong MH, Willis A (1997) Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytol 136(3):481–488

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Ahmad B, Jaleel H, Wani SH, Hasanuzzaman M (2020) A critical review on iron toxicity and tolerance in plants: role of exogenous phytoprotectants. In: Aftab T, Hakeem KA (eds) Plant micronutrients: deficiency and toxicity management. Springer, Cham, pp 83–99

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EGP: Funding acquisition and resources, project administration, supervision, conceptualization, formal analysis, writing—reviewing, and editing. GRR: conceptualization, investigation, writing—original draft. COR: investigation, writing—reviewing and editing. TOA: formal analysis, writing—reviewing, and editing. AIS-S: conceptualization, formal analysis, writing—reviewing, and editing. All authors approved the manuscript.

Corresponding author

Correspondence to Eduardo Gusmão Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All authors approved the manuscript. This work was supported by the Foundation for Research Development of Minas Gerais State (FAPEMIG) and Vale S.A. E. G. Pereira is supported by the National Council for Scientific and Technological Development (CNPq) with a research productivity fellowship.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 182.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios, G.R., Rios, C.O., de Araújo, T.O. et al. Iron excess and nitrogen deprivation influence photosynthetic metabolism in grasses used for mineland rehabilitation. Theor. Exp. Plant Physiol. 35, 427–442 (2023). https://doi.org/10.1007/s40626-023-00298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-023-00298-w

Keywords

Navigation