Skip to main content

A Critical Review on Iron Toxicity and Tolerance in Plants: Role of Exogenous Phytoprotectants

  • Chapter
  • First Online:
Plant Micronutrients

Abstract

Iron (Fe) is a heavy metal mineral element required for various diverse and vital activities of plants. It is one of the principal micronutrients of all plants. However, its threshold value in plants increases by diverse anthropogenic and natural sources, which results in the inhibition of plant growth and development. This inhibition is due to excess Fe availability, in the soil environment, leading to direct or indirect Fe toxicity. This toxicity, as well as the opposite, i.e., iron deficiency, results in disturbance of basic plant metabolism due to disruption in the rate of uptake and translocation of other essential and beneficial mineral nutrient elements. Since other key nutrients and excess Fe compete, in root rhizosphere(s), for the same membrane-localized channels and transporter proteins, one observes development of deficiency symptoms for those nutrients. The use of exogenous elicitors, such as plant growth regulators (PGRs) in the optimization of mineral nutrient status under Fe stress, has been shown not only to minimize excess Fe inside plant tissues, but also to alleviate Fe-induced toxic effects by enhancing antioxidant defense systems, biochemical reactions, and other important morpho-physiological activities in plants. In the present review, we critically discuss the effects of Fe stress (excess/deficiency) in plants. A special attention has been paid on signalling cross talk of Fe with PGRs and the crucial role played by some of the PGRs in overcoming Fe-induced adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamski, J. M., Peters, J. A., Danieloski, R., & Bacarin, M. A. (2011). Excess iron-induced changes in the photosynthetic characteristics of sweet potato. Journal of Plant Physiology, 168, 2056–2062.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, N. A., Singh, H. P., Khan, M. I. R., Masood, A., Per, T. S., Negi, A., & Ahmad, I. (2015). Too much is bad—An appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environmental Science and Pollution Research, 22, 3361–3382.

    Article  CAS  PubMed  Google Scholar 

  • Arnaud, N., Murgia, I., Boucherez, J., Briat, J. F., Cellier, F., & Gaymard, F. (2006). An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. The Journal of Biological Chemistry, 281, 23579–23588.

    Article  CAS  PubMed  Google Scholar 

  • Bacaicoa, E., Mora, V., Zamarreño, Á. M., Fuentes, M., Casanova, E., & García-Mina, J. M. (2011). Auxin: A major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Plant Physiology and Biochemistry, 49, 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Bacaicoa, E., Zamarreño, Á. M., Leménager, D., Baigorri, R., & García-Mina, J. M. (2009). Relationship between the hormonal balance and the regulation of iron deficiency stress responses in cucumber. The Journal of the American Society for Horticultural Science, 134, 589–601.

    Article  Google Scholar 

  • Bailey, R. L., West, J. K. P., & Black, R. E. (2015). The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism, 66, 22–33.

    Article  CAS  PubMed  Google Scholar 

  • Beligni, M. V., & Lamattina, L. (1999). Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 208, 337–344.

    Article  CAS  Google Scholar 

  • Bityutskii, N., Pavlovic, J., Yakkonen, K., Maksimović, V., & Nikolic, M. (2014). Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant Physiology and Biochemistry, 74, 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Briat, J. F., Ravet, K., Arnaud, N., Duc, C., Boucherez, J., Touraine, B., et al. (2010). New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Annals of Botany, 105, 811–822.

    Article  CAS  PubMed  Google Scholar 

  • Brumbarova, T., Bauer, P., & Ivanov, R. (2015). Molecular mechanisms governing Arabidopsis iron uptake. Trends in Plant Science, 20, 124–133.

    Article  CAS  PubMed  Google Scholar 

  • Busi, M. V., Maliandi, M. V., Valdez, H., Clemente, M., Zabaleta, E. J., Araya, A., & Gomez-Casati, D. F. (2006). Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe–S proteins and induces oxidative stress. The Plant Journal, 48, 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte, R., Schikora, A., Briat, J. F., Mari, S., & Curie, C. (2010). High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. The Plant Cell, 22, 904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan-Rodriguez, D., & Walker, E. L. (2018). Analysis of yellow striped mutants of Zea mays reveals novel loci contributing to iron deficiency chlorosis. Frontiers in Plant Science, 9, 157. https://doi.org/10.3389/fpls.2018.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, C., Gopal, R., & Dube, B. K. (2006). Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Scientia Horticulturae, 108, 1–6.

    Article  CAS  Google Scholar 

  • Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology, 154, 810–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conte, S. S., & Walker, E. L. (2011). Transporters contributing to iron trafficking in plants. Molecular Plant, 4, 464–476.

    Article  CAS  PubMed  Google Scholar 

  • De Dorlodot, S., Lutts, S., & Bertin, P. (2005). Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. Journal of Plant Nutrition, 28, 1–20.

    Article  CAS  Google Scholar 

  • De Montaigu, A., Sanz, L. E., Galván, A., & Fernández, E. (2010). A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. The Plant Cell, 22, 1532–1548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delledonne, M., Polverari, A., & Murgia, I. (2003). The functions of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response. Antioxidants Redox Signaling, 5, 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos, R. S., Krüger, M. M., Pegoraro, C., Madabula, F. P., da Maia, L. C., Rombaldi, C. V., & de Oliveira, A. C. (2013). Transcriptional regulation of seven ERFs in rice under oxygen depletion and iron overload stress. Tropical Plant Biology, 6(1), 16–25.

    Article  CAS  Google Scholar 

  • Estevez, M. S., Malanga, G., & Puntarulo, S. (2001). Iron-dependent oxidative stress in Chlorella vulgaris. Plant Science, 161, 9–17.

    Article  CAS  Google Scholar 

  • Fairhurst, T. H., & Witt, C. (2002). Rice: A practical guide to nutrient management. Manila: The International Rice Research Institute.

    Google Scholar 

  • Fenton, H. J. H. (1894). LXXIII—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910.

    Article  CAS  Google Scholar 

  • García, M. J., Lucena, C., Romera, F. J., Alcántara, E., & Pérez-Vicente, R. (2010). Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. Journal of Experimental Botany, 61(14), 3885–3899.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo, M. J., Lucena, J. J., & Hernández-Apaolaza, L. (2013). Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiology and Biochemistry, 70, 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., & Lamattina, L. (2007). Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal, 52(5), 949–960.

    Article  CAS  PubMed  Google Scholar 

  • Grillet, L., Mari, S., & Schmidt, W. (2014). Iron in seeds loading pathways and sub-cellular localization. Frontiers in Plant Science, 4, 535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, D. S., McPhee, K., & Kumar, S. (2017). Development of molecular markers for iron metabolism related genes in lentil and their expression analysis under excess iron stress. Frontiers in Plant Science, 8, 579.

    PubMed  PubMed Central  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (1992). Biologically relevant metal ion-dependent hydroxyl radical generation: An update. FEBS Letters, 307, 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Han, Z. H., Han, C. Q., Xu, X. F., & Wang, Q. (2005). Relationship between iron deficiency stress and endogenous hormones in iron-efficient versus inefficient apple genotypes. Journal of Plant Nutrition, 28, 1887–1895.

    Article  CAS  Google Scholar 

  • Hassan, Z., Ali, S., Rizwa, M., Ali, Q., Haider, M. Z., Adrees, M., & Hussain, A. (2017). Role of iron in alleviating heavy metal stress. In Essential plant nutrients (pp. 335–350). Cham: Springer.

    Chapter  Google Scholar 

  • Kim, S., Wing, S. S., & Ponka, P. (2004). S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway. Molecular and Cellular Biology, 24, 330–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T., & Nishizawa, N. (2012). Iron uptake, translocation and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152.

    Article  CAS  PubMed  Google Scholar 

  • Lauter, A. N. M., Peiffer, G. A., Yin, T., Whitham, S. A., Cook, D., Shoemaker, R. C., & Graham, M. A. (2014). Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics, 15(1), 702.

    Article  CAS  Google Scholar 

  • Lemanceau, P., Bauer, P., Kraemer, S., & Briat, J. F. (2009). Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant and Soil, 321, 513–535.

    Article  CAS  Google Scholar 

  • Li, C. J., Zhu, X. P., & Zhang, F. S. (2000). Role of shoot in regulation of iron deficiency responses in cucumber and bean plants. Journal of Plant Nutrition, 23, 1809–1818.

    Article  CAS  Google Scholar 

  • Li, G., Xu, W., Kronzucker, H. J., & Shi, W. (2015). Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis. Journal of Experimental Botany, 66(7), 2041–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., & Lan, P. (2017). The understanding of the plant iron deficiency responses in Strategy I plants and the role of ethylene in this process by omic approaches. Frontiers in Plant Science, 8, 40.

    PubMed  PubMed Central  Google Scholar 

  • Li, X., & Li, C. (2004). Is ethylene involved in regulation of root ferric reductase activity of dicotyledonous species under iron deficiency? Plant and Soil, 261, 147e153.

    Google Scholar 

  • Lucena, C., Romera, F. J., García, M. J., Alcántara, E., & Pérez-Vicente, R. (2015). Ethylene participates in the regulation of Fe deficiency responses in Strategy I plants and in rice. Frontiers in Plant Science, 6, 1056.

    Google Scholar 

  • Mai, H. J., & Bauer, P. (2016). From the proteomic point of view: Integration of adaptive changes to iron deficiency in plants. Current Plant Biology, 5, 45–56.

    Article  Google Scholar 

  • Malewar, G. U., & Randhawa, N. S. (1978). Clay mineralogical make up of Marathwada soils and their relationship with the content of zinc, iron, manganese and copper [India]. Journal of Maharashtra Agricultural Universities, 3, 1–4.

    CAS  Google Scholar 

  • Manwaring, H. R., Bligh, H. F. J., & Yadav, R. (2016). The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Frontiers in Plant Science, 7, 1944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed., pp. 405–435). London: Academic Press.

    Book  Google Scholar 

  • Martin, M., Colman, M. J. R., Gómez-Casati, D. F., Lamattina, L., & Zabaleta, E. J. (2009). Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Letters, 583, 542–548.

    Article  CAS  PubMed  Google Scholar 

  • Martín-Fernández, C., Solti, Á., Czech, V., Kovács, K., Fodor, F., Gárate, A., & Lucena, J. J. (2017). Response of soybean plants to the application of synthetic and biodegradable Fe chelates and Fe complexes. Plant Physiology and Biochemistry, 118, 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, F., Müller, S., & Bauer, P. (2011). Suppression of Fe deficiency gene expression by jasmonate. Plant Physiology and Biochemistry, 49, 530–536.

    Article  CAS  PubMed  Google Scholar 

  • McLean, E., Cogswell, M., Egli, I., Wojdyla, D., & De Benoist, B. (2009). Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutrition, 12, 44–454.

    Article  Google Scholar 

  • Meng, Z. B., Chen, L. Q., Suo, D., Li, G. X., Tang, C. X., & Zheng, S. J. (2012). Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). Annals of Botany, 109(6), 1055–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monni, S., Uhlig, C., Hansen, E., & Magel, E. (2001). Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environmental Pollution, 112, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Murgia, I., de Pinto, M. C., Delledonne, M., Soave, C., & De Gara, L. (2004). Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death and cell redox state in plant cells. Journal of Plant Physiology, 161, 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Murgia, I., Briat, J. F., Tarantino, D., & Soave, C. (2001). Plant ferritin accumulates in response to photoinhibition but its ectopic overexpression does not protect against photoinhibition. Plant Physiology and Biochemistry, 39, 797–805.

    Article  CAS  Google Scholar 

  • Murgia, I., & Morandini, P. (2017). Iron deficiency prolongs seed dormancy in Arabidopsis plants. Frontiers in Plant Science, 8, 2077. https://doi.org/10.3389/fpls.2017.02077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti, C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Nayak, S. C., Sahu, S. K., Mishra, G. C., & Sandha, B. (2004). Comparison of different amendments for alleviating iron toxicity in rice. International Rice Research Notes, 29, 51–53.

    Google Scholar 

  • Olaleye, A. O., Tabi, F. O., Ogunkunle, A. O., Singh, B. N., & Sahrawat, K. L. (2001). Effect of toxic iron concentrations on the growth of lowlands rice. Journal of Plant Nutrition, 24, 441–457.

    Article  CAS  Google Scholar 

  • O’Rourke, J. A., Charlson, D. V., Gonzalez, D. O., Vodkin, L. O., Graham, M. A., Cianzio, S. R., & Shoemaker, R. C. (2007). Microarray analysis of iron deficiency chlorosis in near isogenic soybean lines. BMC Genomics, 8(1), 476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul, S., Gayen, D., Datta, S. K., & Datta, K. (2016). Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots. Journal of Experimental Botany, 67, 5811–5824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit, J. M., van Wuytswinkel, O., Briat, J. F., & Lobréaux, S. (2001). Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. The Journal of Biological Chemistry, 276, 5584–5590.

    Article  CAS  PubMed  Google Scholar 

  • Ponnamperuma, F. N., Bradfield, R., & Peech, M. (1955). Physiological disease of rice attributable to iron toxicity. Nature, 175, 265.

    Article  CAS  Google Scholar 

  • Ramirez, L. M., Claassen, N., Ubiera, A. A., Werner, H., & Moawad, A. M. (2002). Effect of phosphorus, potassium and zinc fertilizers on iron toxicity in wetland rice (Oryza sativa L.). Plant and Soil, 239, 197–206.

    Article  CAS  Google Scholar 

  • Ravet, K., Touraine, B., Boucherez, J., Briat, J. F., Gaymard, F., & Cellier, F. (2009). Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. The Plant Journal, 57, 400–412.

    Article  CAS  PubMed  Google Scholar 

  • Rawat, M., Nayan, R., Negi, B., Zaidi, M. G. H., & Arora, S. (2017). Physio-biochemical basis of iron-sulfide nano particle induced growth and seed yield enhancement in B. juncea. Plant Physiology and Biochemistry, 118, 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Ricachenevsky, F. K., & Sperotto, R. A. (2014). There and back again, or always there? The evolution of rice combined strategy for Fe uptake. Frontiers in Plant Science, 5, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romera, F. J., & Alcántara, E. (2004). Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Functional Plant Biology, 31, 315–328.

    Article  CAS  PubMed  Google Scholar 

  • Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science, 10, 287. https://doi.org/10.3389/fpls.2019.00287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Römheld, V., & Marschner, H. (1981). Rhythmic iron stress reactions in sunflower at suboptimal iron supply. Physiologia Plantarum, 53, 347–353.

    Article  Google Scholar 

  • Römheld, V., & Schaaf, G. (2004). Iron transport in plants: Future research in view of a plant nutritionist and a molecular biologist. Soil Science & Plant Nutrition, 50, 1003–1012.

    Article  Google Scholar 

  • Sahrawat, K. L. (1998). Flooding soil: A great equalizer of diversity in soil chemical fertility. Oryza, 35, 300–305.

    Google Scholar 

  • Sahrawat, K. L. (2000). Elemental composition of the rice plant as affected by iron toxicity under field conditions. Communications in Soil Science and Plant Analysis, 31, 2819–2827.

    Article  CAS  Google Scholar 

  • Sahrawat, K. L. (2004). Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27, 1471–1504.

    Article  CAS  Google Scholar 

  • Sahu, S. K., Sandha, B., & Dev, G. (2001). Relationship between applied potassium and iron toxicity in rice. International Rice Research Notes, 26, 52–53.

    Google Scholar 

  • Silveira, V. C. D., Oliveira, A. P. D., Sperotto, R. A., Espindola, L. S., Amaral, L., Dias, J. F., et al. (2007). Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazilian Journal of Plant Physiology, 19, 27–139.

    Article  Google Scholar 

  • Stein, R. J., & Waters, B. M. (2011). Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. Journal of Experimental Botany, 63(2), 1039–1055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, H., Feng, F., Liu, J., & Zhao, Q. (2017). The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Frontiers in Plant Science, 8, 2169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Syu, C. H., Lee, C. H., Jiang, P. Y., Chen, M. K., & Lee, D. Y. (2014). Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant and Soil, 374, 411–422.

    Article  CAS  Google Scholar 

  • Tadano, T. (1975). Devices of rice roots to tolerate high iron concentrations in growth media. Japan Agricultural Research Quarterly, 9, 34–39.

    CAS  Google Scholar 

  • Tarantino, D., Petit, J. M., Lobreaux, S., Briat, J. F., Soave, C., & Murgia, I. (2003). Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis. Planta, 217, 709–716.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, D. K., Singh, S., Gaur, S., Singh, S., Yadav, V., Liu, S., & Dubey, N. K. (2018). Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Frontiers in Environmental Science, 5, 86.

    Article  Google Scholar 

  • Tsai, Y. C., & Huang, J. D. (2006). Poly (vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis. Electrochemistry Communications, 8, 956–960.

    Article  CAS  Google Scholar 

  • Wang, B., Li, Y., & Zhang, W. H. (2012). Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Annals of Botany, 110, 681–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Lu, B., Wu, T., Zhang, X., Xu, X., Han, Z., & Wang, Y. (2014). Transcriptomic analysis demonstrates the early responses of local ethylene and redox signaling to low iron stress in Malus xiaojinensis. Tree Genetics & Genomes, 10(3), 573–584.

    Article  Google Scholar 

  • Wintz, H., Fox, T., & Vulpe, C. (2002). Responses of plants to iron, zinc and copper deficiencies. Biochemical Society Transactions, 30, 766–768.

    Article  CAS  PubMed  Google Scholar 

  • Yamanouchi M, Yoshida S (1981) Physiological mechanisms of Rice’s tolerance for iron toxicity. Paper presented at the IRRI Saturday Seminar, June 6, 1981. The International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  • Yamauchi, M. (1989). Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application. Plant and Soil, 117, 275–286.

    Article  CAS  Google Scholar 

  • Yamauchi, M., & Peng, X. X. (1995). Iron toxicity and stress-induced ethylene production in rice leaves. Plant and Soil, 173, 21–28.

    Article  CAS  Google Scholar 

  • Yang, J. L., Chen, W. W., Chen, L. Q., Qin, C., Jin, C. W., Shi, Y. Z., & Zheng, S. J. (2013). The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytologist, 197(3), 815–824.

    Article  CAS  Google Scholar 

  • Yoshida, S. (1981). Fundamentals of rice crop science. Manila: International Rice Research Institute.

    Google Scholar 

  • Zamboni, A., Zanin, L., Tomasi, N., Pezzotti, M., Pinton, R., Varanini, Z., & Cesco, S. (2012). Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC genomics, 13(1), 101.

    Google Scholar 

  • Zhai, L., Xiao, D., Sun, C., Wu, T., Han, Z., Zhang, X., & Wang, Y. (2016). Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis. Plant Physiology and Biochemistry, 109, 515–524.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, F. J., McGrath, S. P., & Meharg, A. A. (2010). Arsenic as a food chain contaminant: Mechanism of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61, 535–559.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Zuo, R., Zhou, R., Huang, J., Tang, M., Cheng, X., et al. (2016). Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus. Frontiers in Plant Science, 7, 1353. https://doi.org/10.3389/fpls.2016.01353.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, M. B., & Hurrell, R. F. (2007). Nutritional iron deficiency. Lancet, 370, 511–520. https://doi.org/10.1016/S0140-6736(07)61235-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Abbu Zaid is grateful to Aligarh Muslim University, Aligarh, and the University Grants Commission (UGC), New Delhi, India, for financial assistance, provided as research fellowship No. BTM-2015-04-GH-7403. We thank Govindjee Govindjee (Professor Emeritus of Plant Biology, Biochemistry, and Biophysics, University of Illinois at Urbana-Champaign, Urbana, USA) for reading and making suggestions to improve our chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaid, A., Ahmad, B., Jaleel, H., Wani, S.H., Hasanuzzaman, M. (2020). A Critical Review on Iron Toxicity and Tolerance in Plants: Role of Exogenous Phytoprotectants. In: Aftab, T., Hakeem, K.R. (eds) Plant Micronutrients. Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_4

Download citation

Publish with us

Policies and ethics