Skip to main content
Log in

Silicon alleviates mesophyll limitations of photosynthesis on rice leaves infected by Monographella albescens

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Leaf scald, caused by Monographella albescens, is a key disease affecting rice production worldwide. Alternative methods for leaf scald management are demanded by the growers and silicon (Si) application emerges as a promising way to decrease severity not only of leaf scald but also of other relevant rice diseases. Some evidence suggests that Si may preserve the photosynthetic performance of plants upon pathogen infection but the mechanistic basis for this remain unresolved. In the present study, mesophyll conductance (gm) was calculated to suitably parameterize the responses of net carbon assimilation rate (A) to chloroplastidic CO2 concentration (Cc) and to resolve the relative contributions of stomatal, mesophyll, and biochemical drawbacks to photosynthesis in rice plants challenged with M. albescens and how all of these facts may be influenced by Si application. Rice plants (cultivar “Primavera”) were hydroponically grown with 0 or 2 mM Si (− Si and + Si plants) and inoculated with M. albescens. Leaf scald-induced decreases in A were associated with roughly proportional decreases in CO2 diffusion (lower stomatal conductance and gm) and impaired photochemistry (e.g. reduced maximum electron transport rate) and biochemistry (e.g. RuBisCO activity) regardless of Si supply. The magnitude of these decreases were, overall, greater in − Si plants than in their + Si counterparts, and therefore a mitigating effect of Si on the preservation of the photosynthetic activity on diseased plants is evident. On infected leaves, gm was not scaled with maximum carboxylation rate (Vcmax) − Cc and, as a consequence, Cc increased accordingly, but only in + Si plants. In conclusion, the supply of Si to rice plants played a central role in decreasing leaf scald symptoms and, as such, preserving to a certain extent their photosynthetic performance. This preservation was not linked to differential impairments on the stomatal function or biochemical steps of photosynthesis but rather with increased CO2 diffusion throughout the mesophyll. This ultimately led to a lower photorespiration-to-gross photosynthesis ratio and less mesophyll limitations of photosynthesis in + Si plants than in their − Si counterparts during the infection process of M. albescens on rice leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aucique-Pérez CE, Rodrigues FA, Moreira WR, DaMatta FM (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 104:143–149

    Article  CAS  Google Scholar 

  • Berghaus R, Reisener HJ (1985) Changes in photosynthesis of wheat plants infected with wheat stem rust (Puccinia graminis f.sp. tritici). J Phytopathol 112:165–172

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85

    Article  PubMed  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, Tanaka FAO, Amorim L, Camargo LEA (2012) Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathol 61:323–330

    Article  CAS  Google Scholar 

  • DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SCV, Sanglard LMVP, Morais LE, Torre-Neto A, Ghini R (2016) Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J Exp Bot 67:341–352

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Martins SCV, Pereira LF, DaMatta FM (2014) Limitations to photosynthesis in leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 104:33–39

    Article  CAS  Google Scholar 

  • Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Detmann KC, Araújo WL, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues FA, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762

    Article  CAS  PubMed  Google Scholar 

  • Domiciano GP, Rodrigues FA, Vale FXR, Xavier Filha MS, Moreira WR, Andrade CCL, Pereira SC (2009) Wheat resistance to spot blotch potentiated by silicon. J Phytopathol 158:334–343

    Article  CAS  Google Scholar 

  • Domiciano GP, Cacique IS, Freitas CC, Filippi MCC, DaMatta FM, Vale FXR, Rodrigues FA (2015) Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon. Phytopathology 105:738–747

    Article  CAS  PubMed  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Filippi MCC, Prabhu AS (2005) Escaldadura do Arroz e seu Controle. Circular Técnica 72. Santo Antônio de Goiás GO. Embrapa Arroz e Feijão

  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Molins A, Flexas J, Conesa M (2017) Coordination between leaf CO2 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species. Plant Cell Environ 40:2081–2094

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Griffths H, Helliker BR (2013) Mesophyll conductance: internal insights of leaf carbon exchange. Plant Cell Environ 36:733–735

    Article  CAS  Google Scholar 

  • Groth D (1992) Leaf scald. In: Webster R, Gunnel P (eds) Compendium of rice diseases. APS Press, St. Paul

    Google Scholar 

  • Gu L, Pallardy SG, Tu K, Law BE, Wullschleger SD (2010) Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant Cell Environ 33:1852–1874

    Article  CAS  PubMed  Google Scholar 

  • Harley PC, Loreto F, Marco GD, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plant without soil. Calif Agric Exp Stn 347:1–32

    Google Scholar 

  • Korndörfer GH, Pereira HS, Nolla A (2004) Análise de silício: solo, planta e fertilizante. Boletim Técnico. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Logan BA, Kornyeyev D, Hardison J, Holaday AS (2006) The role of antioxidant enzymes in photoprotection. Photosynth Res 88:119–132

    Article  CAS  PubMed  Google Scholar 

  • Logan BA, Adams WW, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853–859

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Phytopathology 98(2):196–204

    Article  CAS  PubMed  Google Scholar 

  • Matsuo T, Hoshikawa K (1993) Science of the rice plant: morphology. Tokyo, Food and Agriculture Policy Research Center, p 688

    Google Scholar 

  • Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566

    Article  Google Scholar 

  • Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 29:1159–1178

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  CAS  PubMed  Google Scholar 

  • Nogueira Junior AF, Ribeiro RV, Appezzato-da-Glória B, Soares MKMS, Rasera JB, Amorim L (2017) Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine. Front Plant Sci 8:1–12

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, p 380

    Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors and recommendations. J Exp Bot 60:2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Rodeghiero M, Niinemets Ü, Cescatti A (2007) Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et.al. model parameters? Plant Cell Environ 30:1006–1022

    Article  CAS  PubMed  Google Scholar 

  • Sampol B, Bota J, Riera D, Medrano H, Flexas J (2003) Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol 160:403–412

    Article  CAS  PubMed  Google Scholar 

  • Sanglard LMVP, Martins SCV, Detmann KC, Silva PEM, Lavinsky AO, Silva MM, Detmann E, Araújo WL, DaMatta FM (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant 152:355–356

    Article  CAS  PubMed  Google Scholar 

  • Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance. Funct Plant Biol 36:880–892

    Article  PubMed  Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white mold: a review. Crop Sci 53:1832–1844

    Article  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Tatagiba SD, Rodrigues FA, Filippi MCC, Silva GB, Silva LC (2014) Physiological responses of rice plants supplied with silicon to Monographella albescens infection. J Phytopathol 162:596–606

    Article  CAS  Google Scholar 

  • Tatagiba SD, DaMatta FM, Rodrigues FA (2015) Leaf gas exchange and chlorophyll a fluorescence imaging of rice leaves infected with Monographella albescens. Phytopathology 105:180–188

    Article  CAS  PubMed  Google Scholar 

  • Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T, Vislap V, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64:2269–2281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.). Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nakamura A, Iwai H, Ishii T, Ma JF, Yokoyama R, Nishitani K, Satoh S, Furukawa J (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 125:771–779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Professors F. A. Rodrigues and F. M. DaMatta acknowledge the National Council for Technological and Scientific Development (CNPq) for their fellowships. This study was supported by grants from CNPq and FAPEMIG to Prof. Rodrigues. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício Ávila Rodrigues.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, L.F., Martins, S.C.V., Aucique-Pérez, C.E. et al. Silicon alleviates mesophyll limitations of photosynthesis on rice leaves infected by Monographella albescens. Theor. Exp. Plant Physiol. 32, 163–174 (2020). https://doi.org/10.1007/s40626-020-00178-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-020-00178-7

Keywords

Navigation