Skip to main content

Advertisement

Log in

SNF472: a novel therapeutic agent for vascular calcification and calciphylaxis

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Vascular calcification is a common complication in patients with chronic kidney disease (CKD) and is strongly associated with an increased risk of cardiovascular events and all-cause mortality. Calciphylaxis is a specific and life-threatening manifestation of vascular calcifications that usually affects individuals with advanced kidney function impairment or those undergoing dialysis. Currently, the treatment of vascular calcification and calciphylaxis in CKD lacks approved treatments and focuses on controlling risk factors. SNF472, the intravenous formulation of myo-inositol hexaphosphate, is a novel vascular calcification inhibitor currently undergoing phase 3 clinical trials, demonstrating its ability to directly inhibit the formation of calcium and phosphorus crystals, thereby blocking the production and deposition of ectopic calcium. The efficacy and safety of SNF472 in inhibiting vascular calcification have been confirmed in recent clinical studies. This review summarizes the results of studies related to SNF472 to provide a comprehensive overview of its mechanism of action, efficacy, safety, and ongoing clinical studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 395(10225):709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  2. Jankowski J, Floege J, Fliser D, Böhm M, Marx N (2021) Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143(11):1157–1172. https://doi.org/10.1161/CIRCULATIONAHA.120.050686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson S, James M, Wiebe N, Hemmelgarn B, Manns B, Klarenbach S et al (2015) Cause of death in patients with reduced kidney function. J Am Soc Nephrol 26(10):2504–2511. https://doi.org/10.1681/ASN.2014070714

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nigwekar SU, Thadhani R, Brandenburg VM (2018) Calciphylaxis. N Engl J Med 378(18):1704–1714. https://doi.org/10.1056/NEJMra1505292

    Article  CAS  PubMed  Google Scholar 

  5. Mccarthy JT, El-Azhary RA, Patzelt MT, Weaver AL, Albright RC, Bridges AD et al (2016) Survival, risk factors, and effect of treatment in 101 patients with calciphylaxis. Mayo Clin Proc 91(10):1384–1394. https://doi.org/10.1016/j.mayocp.2016.06.025

    Article  PubMed  Google Scholar 

  6. Nigwekar SU, Zhao S, Wenger J, Hymes JL, Maddux FW, Thadhani RI et al (2016) A nationally representative study of calcific uremic arteriolopathy risk factors. J Am Soc Nephrol 27(11):3421–3429. https://doi.org/10.1681/ASN.2015091065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nelson AJ, Raggi P, Wolf M, Gold AM, Chertow GM, Roe MT (2020) Targeting vascular calcification in chronic kidney disease. JACC Basic Transl Sci 5(4):398–412. https://doi.org/10.1016/j.jacbts.2020.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Tang R, Zhang Y, Chen S, Guo Y, Wang X et al (2021) PTH-induced EndMT via miR-29a-5p/GSAP/Notch1 pathway contributed to valvular calcification in rats with CKD. Cell Proliferat 54(6):e13018. https://doi.org/10.1111/cpr.13018

    Article  CAS  Google Scholar 

  9. Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117(22):2938–2948. https://doi.org/10.1161/CIRCULATIONAHA.107.743161

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moe SM, Chen NX (2008) Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol 19(2):213–216. https://doi.org/10.1681/ASN.2007080854

    Article  CAS  PubMed  Google Scholar 

  11. Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G et al (2017) Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 281(5):471–482. https://doi.org/10.1111/joim.12605

    Article  CAS  PubMed  Google Scholar 

  12. Maher ER, Young G, Smyth-Walsh B, Pugh S, Curtis JR (1987) Aortic and mitral valve calcification in patients with end-stage renal disease. Lancet 2(8564):875–877. https://doi.org/10.1016/s0140-6736(87)91370-5

    Article  CAS  PubMed  Google Scholar 

  13. Rattazzi M, Bertacco E, Del Vecchio A, Puato M, Faggin E, Pauletto P (2013) Aortic valve calcification in chronic kidney disease. Nephrol Dial Transplant 28(12):2968–2976. https://doi.org/10.1093/ndt/gft310

    Article  CAS  PubMed  Google Scholar 

  14. Chang JJ (2019) Calciphylaxis: diagnosis, pathogenesis, and treatment. Adv Skin Wound Care 32(5):205–215. https://doi.org/10.1097/01.Asw.0000554443.14002.13

    Article  PubMed  Google Scholar 

  15. Tsuchiya K, Akihisa T (2021) the importance of phosphate control in chronic kidney disease. Nutrients. https://doi.org/10.3390/nu13051670

    Article  PubMed  PubMed Central  Google Scholar 

  16. Floege J, Kubo Y, Floege A, Chertow GM, Parfrey PS (2015) The effect of cinacalcet on calcific uremic arteriolopathy events in patients receiving hemodialysis: the EVOLVE Trial. Clin J Am Soc Nephrol 10(5):800–807. https://doi.org/10.2215/CJN.10221014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Neill WC, Hardcastle KI (2012) The chemistry of thiosulfate and vascular calcification. Nephrol Dial Transplant 27(2):521–526. https://doi.org/10.1093/ndt/gfr375

    Article  CAS  PubMed  Google Scholar 

  18. Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-O M, Moe OW et al (2012) Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int 82(12):1261–1270. https://doi.org/10.1038/ki.2012.322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hansen D, Rasmussen K, Rasmussen LM, Bruunsgaard H, Brandi L (2014) The influence of vitamin D analogs on calcification modulators, N-terminal pro-B-type natriuretic peptide and inflammatory markers in hemodialysis patients: a randomized crossover study. BMC Nephrol 15:130. https://doi.org/10.1186/1471-2369-15-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang AY, Fang F, Chan J, Wen YY, Qing S, Chan IH et al (2014) Effect of paricalcitol on left ventricular mass and function in CKD–the OPERA trial. J Am Soc Nephrol 25(1):175–186. https://doi.org/10.1681/ASN.2013010103

    Article  CAS  PubMed  Google Scholar 

  21. El-Azhary RA, Arthur AK, Davis MDP, Mcevoy MT, Gibson LE, Weaver AL et al (2013) Retrospective analysis of tissue plasminogen activator as an adjuvant treatment for calciphylaxis. Jama Dermatol 149(1):63–67. https://doi.org/10.1001/2013.jamadermatol.5

    Article  CAS  PubMed  Google Scholar 

  22. Christiadi D, Singer RF (2018) Calciphylaxis in a dialysis patient successfully treated with high-dose vitamin K supplementation. Clin Kidney J 11(4):528–529. https://doi.org/10.1093/ckj/sfx126

    Article  CAS  PubMed  Google Scholar 

  23. Marietta M, Coluccio V, Boriani G, Luppi M (2020) Effects of Anti-vitamin k oral anticoagulants on bone and cardiovascular health. Eur J Intern Med 79:1–11. https://doi.org/10.1016/j.ejim.2020.05.032

    Article  CAS  PubMed  Google Scholar 

  24. Lomashvili KA, Monier-Faugere MC, Wang X, Malluche HH, O’Neill WC (2009) Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int 75(6):617–625. https://doi.org/10.1038/ki.2008.646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grases F (2006) Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front Biosci. https://doi.org/10.2741/1786

    Article  PubMed  Google Scholar 

  26. Grases F, Sanchis P, Costa-Bauzá A, Bonnin O, Isern B, Perelló J et al (2008) Phytate inhibits bovine pericardium calcification in vitro. Cardiovasc Pathol 17(3):139–145. https://doi.org/10.1016/j.carpath.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  27. Sanchis P, Buades JM, Berga F, Gelabert MM, Molina M, íñigo MV et al (2016) Protective effect of myo-inositol hexaphosphate (Phytate) on abdominal aortic calcification in patients with chronic kidney disease. J Ren Nutr 26(4):226–236. https://doi.org/10.1053/j.jrn.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  28. Ferrer MD, Pérez MM, Cànaves MM, Buades JM, Salcedo C, Perelló J (2017) A novel pharmacodynamic assay to evaluate the effects of crystallization inhibitors on calcium phosphate crystallization in human plasma. Sci Rep-UK 7(1):6858. https://doi.org/10.1038/s41598-017-07203-x

    Article  CAS  Google Scholar 

  29. Perelló J, Joubert PH, Ferrer MD, Canals AZ, Sinha S, Salcedo C (2018) First-time-in-human randomized clinical trial in healthy volunteers and haemodialysis patients with SNF472, a novel inhibitor of vascular calcification. Br J Clin Pharmacol 84(12):2867–2876. https://doi.org/10.1111/bcp.13752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perelló J, Ferrer MD, Del MPM, Kaesler N, Brandenburg VM, Behets GJ et al (2020) Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis. Br J Pharmacol 177(19):4400–4415. https://doi.org/10.1111/bph.15163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrer MD, Ketteler M, Tur F, Tur E, Isern B, Salcedo C et al (2018) Characterization of SNF472 pharmacokinetics and efficacy in uremic and non-uremic rats models of cardiovascular calcification. PLoS One 13(5):e197061. https://doi.org/10.1371/journal.pone.0197061

    Article  CAS  Google Scholar 

  32. Zabirnyk A, Ferrer MD, Bogdanova M, Pérez MM, Salcedo C, Kaljusto ML et al (2019) SNF472, a novel anti-crystallization agent, inhibits induced calcification in an in vitro model of human aortic valve calcification. Vascul Pharmacol 122–123:106583. https://doi.org/10.1016/j.vph.2019.106583

    Article  CAS  PubMed  Google Scholar 

  33. Zabirnyk A, Perez MDM, Blasco M, Stensløkken K, Ferrer MD, Salcedo C et al (2020) A novel ex vivo model of aortic valve calcification. A preliminary report. Front Pharmacol 11:568764. https://doi.org/10.3389/fphar.2020.568764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salcedo C, Joubert PH, Ferrer MD, Canals AZ, Maduell F, Torregrosa V et al (2019) A phase 1b randomized, placebo-controlled clinical trial with SNF472 in haemodialysis patients. Br J Clin Pharmacol 85(4):796–806. https://doi.org/10.1111/bcp.13863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nahapetian A, Young VR (1980) Metabolism of 14C-phytate in rats: effect of low and high dietary calcium intakes. J Nutr 110(7):1458–1472. https://doi.org/10.1093/jn/110.7.1458

    Article  CAS  PubMed  Google Scholar 

  36. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK et al (2002) Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39(4):695–701. https://doi.org/10.1016/s0735-1097(01)01781-8

    Article  PubMed  Google Scholar 

  37. Alluri K, Joshi PH, Henry TS, Blumenthal RS, Nasir K, Blaha MJ (2015) Scoring of coronary artery calcium scans: history, assumptions, current limitations, and future directions. Atherosclerosis 239(1):109–117. https://doi.org/10.1016/j.atherosclerosis.2014.12.040

    Article  CAS  PubMed  Google Scholar 

  38. Bellasi A, Raggi P, Bover J, Bushinsky DA, Chertow GM, Ketteler M et al (2021) Trial design and baseline characteristics of CaLIPSO: a randomized, double-blind placebo-controlled trial of SNF472 in patients receiving haemodialysis with cardiovascular calcification. Clin Kidney J 14(1):366–374. https://doi.org/10.1093/ckj/sfz144

    Article  CAS  PubMed  Google Scholar 

  39. Raggi P, Bellasi A, Bushinsky D, Bover J, Rodriguez M, Ketteler M et al (2020) Slowing progression of cardiovascular calcification with SNF472 in patients on hemodialysis: results of a randomized phase 2b study. Circulation 141(9):728–739. https://doi.org/10.1161/CIRCULATIONAHA.119.044195

    Article  CAS  PubMed  Google Scholar 

  40. Raggi P, Bellasi A, Sinha S, Bover J, Rodriguez M, Ketteler M et al (2020) Effects of SNF472, a novel inhibitor of hydroxyapatite crystallization in patients receiving hemodialysis—subgroup analyses of the CALIPSO Trial. Kidney Int Rep 5(12):2178–2182. https://doi.org/10.1016/j.ekir.2020.09.032

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bushinsky DA, Raggi P, Bover J, Ketteler M, Bellasi A, Rodriguez M et al (2021) Effects of myo-inositol hexaphosphate (SNF472) on bone mineral density in patients receiving hemodialysis: an analysis of the randomized, placebo-controlled CaLIPSO Study. Clin J Am Soc Nephrol 16(5):736–745. https://doi.org/10.2215/cjn.16931020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nigwekar SU, Solid CA, Ankers E, Malhotra R, Eggert W, Turchin A et al (2014) Quantifying a rare disease in administrative data: the example of calciphylaxis. J Gen Intern Med 29 Suppl 3(Suppl 3):S724–S731. https://doi.org/10.1007/s11606-014-2910-1

    Article  PubMed  Google Scholar 

  43. Brandenburg VM, Kramann R, Rothe H, Kaesler N, Korbiel J, Specht P et al (2017) Calcific uraemic arteriolopathy (calciphylaxis): data from a large nationwide registry. Nephrol Dial Transplant 32(1):126–132. https://doi.org/10.1093/ndt/gfv438

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Yang C, Yang X, Xie X, Liu H, Zhang L et al (2022) Prevalence and clinical characteristics of calciphylaxis in chinese hemodialysis patients. Front Med (Lausanne) 9:902171. https://doi.org/10.3389/fmed.2022.902171

    Article  PubMed  Google Scholar 

  45. Yang C, Liu Y, Ni H, Li X, Liu H, Zhang X (2021) Potential effect of sodium thiosulfate in calciphylaxis: remission of intractable pain. J Pak Med Assoc 71(1(B)):367–369. https://doi.org/10.47391/JPMA.1244

    Article  PubMed  Google Scholar 

  46. Rivera-Nieves J, Bamias G, Alfert J, Bickston SJ, Moskaluk CA, Cominelli F (2002) Intestinal ischemia and peripheral gangrene in a patient with chronic renal failure. Gastroenterology 122(2):495–499. https://doi.org/10.1053/gast.2002.31387

    Article  PubMed  Google Scholar 

  47. Shi W, Xie X, Liu Y, Yang C, Zhang X (2021) The mystery of black lungs in a patient with calciphylaxis. J Nephrol 34(5):1553–1555. https://doi.org/10.1007/s40620-021-01121-y

    Article  CAS  PubMed  Google Scholar 

  48. Yu Q, Liu Y, Xie X, Liu J, Huang S, Zhang X et al (2021) Radiomics-based method for diagnosis of calciphylaxis in patients with chronic kidney disease using computed tomography. Quant Imag Med Surg 11(11):4617–4626. https://doi.org/10.21037/qims-20-1211

    Article  Google Scholar 

  49. Yang C, Zhang X, Xie X, Zhao Y (2022) Comments on “Ultrasound findings of calciphylaxis.” Kidney Int 101(5):1085. https://doi.org/10.1016/j.kint.2022.01.020

    Article  PubMed  Google Scholar 

  50. Zhu X, Liu Y, Yang X, Liu B, Zhang X (2022) Identifying subcutaneous tissue microcalcification by Fluo-3 AM imaging in cutaneous calciphylaxis. Exp Dermatol. https://doi.org/10.1111/exd.14579

    Article  PubMed  Google Scholar 

  51. Brandenburg VM, Sinha S, Torregrosa JV, Garg R, Miller S, Canals AZ et al (2019) Improvement in wound healing, pain, and quality of life after 12 weeks of SNF472 treatment: a phase 2 open-label study of patients with calciphylaxis. J Nephrol 32(5):811–821. https://doi.org/10.1007/s40620-019-00631-0

    Article  CAS  PubMed  Google Scholar 

  52. Harris C, Bates-Jensen B, Parslow N, Raizman R, Singh M, Ketchen R (2010) Bates-Jensen wound assessment tool: pictorial guide validation project. J Wound Ostomy Continence Nurs 37(3):253–259. https://doi.org/10.1097/WON.0b013e3181d73aab

    Article  PubMed  Google Scholar 

  53. Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH et al (2011) Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage 41(6):1073–1093. https://doi.org/10.1016/j.jpainsymman.2010.08.016

    Article  PubMed  Google Scholar 

  54. Janke TM, Kozon V, Valiukeviciene S, Rackauskaite L, Reich A, Stępień K et al (2023) Validation of the Wound-QoL-17 and the Wound-QoL-14 in a European sample of 305 patients with chronic wounds. Int Wound J. https://doi.org/10.1111/iwj.14505

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sinha S, Gould LJ, Nigwekar SU, Serena TE, Brandenburg V, Moe SM et al (2022) The CALCIPHYX study: a randomized, double-blind, placebo-controlled, Phase 3 clinical trial of SNF472 for the treatment of calciphylaxis. Clin Kidney J 15(1):136–144. https://doi.org/10.1093/ckj/sfab117

    Article  CAS  PubMed  Google Scholar 

  56. Gould LJ, Serena TE, Sinha S (2021) Development of the BWAT-CUA scale to assess wounds in patients with calciphylaxis. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11040730

    Article  PubMed  Google Scholar 

  57. Leskinen Y, Salenius JP, Lehtimäki T, Huhtala H, Saha H (2002) The prevalence of peripheral arterial disease and medial arterial calcification in patients with chronic renal failure: requirements for diagnostics. Am J Kidney Dis 40(3):472–479. https://doi.org/10.1053/ajkd.2002.34885

    Article  PubMed  Google Scholar 

  58. Ho CY, Shanahan CM (2016) Medial arterial calcification: an overlooked player in peripheral arterial disease. Arterioscler Thromb Vasc Biol 36(8):1475–1482. https://doi.org/10.1161/ATVBAHA.116.306717

    Article  CAS  PubMed  Google Scholar 

  59. Bassissi F, Reynes MDF, Pérez MM, Perelló J, Salcedo C (2020) SNF472 improves limb blood perfusion and walking ability in a peripheral artery disease vascular calcification rat model. Nephrol Dial Transpl 35(SUPPL 3):i265. https://doi.org/10.1093/ndt/gfaa144.P1234

    Article  Google Scholar 

  60. Pimentel A, Ureña-Torres P, Zillikens MC, Bover J, Cohen-Solal M (2017) Fractures in patients with CKD-diagnosis, treatment, and prevention: a review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int 92(6):1343–1355. https://doi.org/10.1016/j.kint.2017.07.021

    Article  PubMed  Google Scholar 

  61. Arriero MM, Ramis JM, Perelló J, Monjo M (2012) Differential response of MC3T3-E1 and human mesenchymal stem cells to inositol hexakisphosphate. Cell Physiol Biochem 30(4):974–986. https://doi.org/10.1159/000341474

    Article  CAS  PubMed  Google Scholar 

  62. Addison WN, Mckee MD (2010) Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures. Bone 46(4):1100–1107. https://doi.org/10.1016/j.bone.2010.01.367

    Article  CAS  PubMed  Google Scholar 

  63. Grases F, Sanchis P, Prieto RM, Perelló J, López-González ÁA (2010) Effect of tetracalcium dimagnesium phytate on bone characteristics in ovariectomized rats. J Med Food 13(6):1301–1306. https://doi.org/10.1089/jmf.2009.0152

    Article  CAS  PubMed  Google Scholar 

  64. López-González AA, Grases F, Monroy N, Marí B, Vicente-Herrero MT, Tur F et al (2013) Protective effect of myo-inositol hexaphosphate (phytate) on bone mass loss in postmenopausal women. Eur J Nutr 52(2):717–726. https://doi.org/10.1007/s00394-012-0377-6

    Article  CAS  PubMed  Google Scholar 

  65. López-González AA, Grases F, Roca P, Mari B, Vicente-Herrero MT, Costa-Bauzá A (2008) Phytate (myo-inositol hexaphosphate) and risk factors for osteoporosis. J Med Food 11(4):747–752. https://doi.org/10.1089/jmf.2008.0087

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by 1. National Natural Science Foundation of China (No. 81570612 and No. 81870497); 2. Jiangsu Province Key Research and Development Program-Social Development (No. BE2021737); 3. Nanjing Health and Scientific Technology Development Program (No. YKK20237 and No. YKK21268).

Author information

Authors and Affiliations

Authors

Contributions

YCL and ZXL designed the study. YCL, and WZY prepared material and collected study data. The first draft of the manuscript was written by YCL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoliang Zhang.

Ethics declarations

Conflict of interest

The authors declared no competing interests.

Ethical approval

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wei, Z., Shi, W. et al. SNF472: a novel therapeutic agent for vascular calcification and calciphylaxis. J Nephrol (2024). https://doi.org/10.1007/s40620-024-01909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40620-024-01909-8

Keywords

Navigation