Skip to main content
Log in

An update on vascular calcification and potential therapeutics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pathological calcification is a major cause of cardiovascular morbidities primarily in population with chronic kidney disease (CKD), end stage renal diseases (ERSD) and metabolic disorders. Investigators have accepted the fact that vascular calcification is not a passive process but a highly complex, cell mediated, active process in patients with cardiovascular disease (CVD) resulting from, metabolic insults of bone fragility, diabetes, hypertension, dyslipidemia and atherosclerosis. Over the years, studies have revealed various mechanisms of vascular calcification like induction of bone formation, apoptosis, alteration in Ca-P balance and loss of inhibition. Novel clinical studies targeting cellular mechanisms of calcification provide promising and potential avenues for drug development. The interventions include phosphate binders, sodium thiosulphate, vitamin K, calcimimetics, vitamin D, bisphosphonates, Myoinositol hexaphosphate (IP6), Denosumab and TNAP inhibitors. Concurrently investigators are also working towards reversing or curing pathological calcification. This review focuses on the relationship of vascular calcification to clinical diseases, regulators and factors causing calcification including genetics which have been identified. At present, there is lack of any significant preventive measures for calcifications and hence this review explores further possibilities for drug development and treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

OPN:

Osteopontin

CVD:

Cardiovascular diseases

VC:

Vascular calcification

CaP:

Calcium phosphate

CKD:

Chronic kidney disease

VSMC:

Vascular smooth muscle cells

OPG:

Osteoprotegerin

MGP:

Matrix gla protein

RANKL:

Receptor activator of nuclear factor kappa-B ligand

Cbfα1:

Core binding factor-α1

BMPs:

Bone morphogenetic proteins

IP6:

Myo-inositol hexaphosphate

References

  1. Wu M, Rementer C, Giachelli CM (2013) Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 93:365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sebastian R, Contiguglia AC, Alfrey NL et al (2011) Role of calcium-phosphate deposition in vascular smooth muscle cell calcification. Am J Physiol 300:C210–C220

    Article  CAS  Google Scholar 

  3. Mackey HR, Sutton-Tyrrell K (2007) Calcifications, arterial stiffness and atherosclerosis. Adv Cardiol 44:234–244

    Article  CAS  PubMed  Google Scholar 

  4. Giachelli CM (2004) Vascular calcification mechanisms. J Am Soc Nephrol 15:2959–2964

    Article  PubMed  Google Scholar 

  5. Prabhakaran D, Jeemon P, Roy A (2016) Cardiovascular diseases in India current epidemiology and future directions. Circulation 133(16):1605–1620

    Article  PubMed  Google Scholar 

  6. Lee SN, Lee IK, Jeon JH (2020) Vascular calcification—new insights into its mechanism. Int J Mol Sci 2020(21):2685

    Article  CAS  Google Scholar 

  7. Zhu D, Mackenzie CWN, Farquharson C et al (2012) Mechanisms and clinical consequences of vascular calcification. Front Endocrinol 95(3):1–12

    Google Scholar 

  8. Back M, Gasser CT, Michel JB et al (2013) Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 99:232–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Demer LL, Tintut Y (2001) Vascular calcification: pathobiology of a multifaceted disease. Circulation 104(16):1881–1883

    Article  CAS  PubMed  Google Scholar 

  10. Doherty TM, Asotra K, Fitzpatrick LA et al (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 100:11201–11206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roijers RB, Debernardi N, Cleutjens JP et al (2011) Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol 178:2879–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abedin M, Tintut Y, Demer LL (2004) Vascular calcification mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1161–1170

    Article  CAS  PubMed  Google Scholar 

  13. Levingstone TJ, Herbaj S, Dunne NJ (2019) Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials (Basel) 9(11):1570

    Article  CAS  Google Scholar 

  14. Allison MA, Criqui MH, Wright CM (2004) Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler Thromb Vasc Biol 24:331–336

    Article  CAS  PubMed  Google Scholar 

  15. Lanzer P, Boehm M, Sorribas V et al (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 2014(35):1515–1525

    Article  Google Scholar 

  16. Giachelli CM (2004) Mechanisms of vascular calcification in uremia. Semin Nephrol 24:401–402

    Article  CAS  PubMed  Google Scholar 

  17. Iyemere VP, Proudfoot D, Weissberg PL et al (2006) Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 260:192–210

    Article  CAS  PubMed  Google Scholar 

  18. Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696

    Article  CAS  PubMed  Google Scholar 

  19. Van den Bergh G, Opdebeeck B, D’Haese PC et al (2019) The vicious cycle of arterial stiffness and arterial media calcification. Trends Mol Med 25:1133–1146

    Article  PubMed  Google Scholar 

  20. Ren X, Li F, Wang C et al (2019) Age- and sex-related aortic valve dysfunction and aortopathy difference in patients with bicuspid aortic valve. Int Heart J 60:637–642

    Article  PubMed  Google Scholar 

  21. LaHaye S, Lincoln J, Garg V (2014) Genetics of valvular heart disease. Curr Cardiol Rep 16:487

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zeng YI, Sun R, Li X et al (2016) Pathophysiology of valvular heart disease. Exp Ther Med 11:1184–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohler ER, Sheridan MJ, Nichols R et al (1991) Development and progression of aortic valve stenosis: atherosclerosis risk factors—a causal relationship? Aclinical morphologic study. Clin Cardiol 1991(14):995–999

    Article  Google Scholar 

  24. Qunibi WY, Nolan CA, Ayus JC (2002) Cardiovascular calcification in patients with end-stage renal disease: a century-old phenomenon. Kidney Int 82:S73–S80

    Article  CAS  Google Scholar 

  25. McMullen ER, Harms PW, Lowe L et al (2019) Clinicopathologic features and calcium deposition patterns in calciphylaxis: comparison with gangrene, peripheral artery disease, chronic stasis, and thrombotic vasculopathy. Am J Surg Pathol 43:1273–1281

    Article  PubMed  Google Scholar 

  26. Cucchiari D, Torregrosa JV (2018) Calciphylaxis in patients with chronic kidney disease: a disease which is still bewildering and potentially fatal. Nefrologia 38:579–586

    Article  PubMed  Google Scholar 

  27. Mazhar AR, Johnson RJ, Gillen D et al (2001) Risk factors and mortality associated with calciphylaxis in end-stage renal disease. Kidney Int 60:324–332

    Article  CAS  PubMed  Google Scholar 

  28. Velasco N, MacGregor MS, Innes A et al (2006) Successful treatment of calciphylaxis with cinacalcet-an alternative to parathyroidectomy? Nephrol Dial Transplant 21:1999–2004

    Article  PubMed  Google Scholar 

  29. Bleyer AJ, Choi M, Igwemezie B et al (1998) A case control study of proximal calciphylaxis. Am J Kidney Dis 32:376–383

    Article  CAS  PubMed  Google Scholar 

  30. Krishna J, Singh R, Zeller T et al (2014) Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Cardiovasc Interv 83(6):E212–E220

    Google Scholar 

  31. Chavkin N, Chia J, Crouthamel M et al (2015) Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res 333:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melaku L, Mossie A (2017) Molecular mediators and controlling mechanism of vascular calcification. Clin Exp Physiol 4(1):3–14

    Article  Google Scholar 

  33. Sage A, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida T, Yamashita M, Hayashi M (2012) Krüppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem 287:25706–25714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. London MG (2013) Mechanisms of arterial calcifications and consequences for cardiovascular function. Kidney Int Suppl 3(5):442–445

    Article  CAS  Google Scholar 

  36. Lin M, Chen T, Leaf EM (2015) Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. Am J Pathol 185(7):1958–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogt I, Haffner D, Nestler ML (2019) FGF23 and phosphate–cardiovascular toxins in CKD. Toxins (Basel) 11(11):647

    Article  CAS  Google Scholar 

  38. Roy M, Nishimoto S (2002) Matrix Gla protein binding to hydroxyapatite is dependent on the ionic environment: calcium enhances binding affinity but phosphate and magnesium decrease affinity. Bone 31:296–302

    Article  CAS  PubMed  Google Scholar 

  39. Jaminon AMG, Dai L, Qureshi AR et al (2020) Matrix Gla protein is an independent predictor of both intimal and medial vascular calcification in chronic kidney disease. Sci Rep 10:6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scatena M, Liaw L, Giachelli CM (2007) Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27:23029

    Article  CAS  Google Scholar 

  41. Lok Y, Lyle N (2019) Osteopontin in vascular disease friend or foe? Arterioscler Thromb Vasc Biol 39:613–622

    Article  CAS  PubMed  Google Scholar 

  42. Kiefer W, Zeyda M, Gollinger K et al (2010) Neutralization of osteopontin inhibits obesity induced inflammation and insulin resistance. Diabetes 59:93546

    Article  CAS  Google Scholar 

  43. Osdoby PC (2004) Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 95:104657

    Google Scholar 

  44. Lacey D, Timms E, Tan H et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:16576

    Article  Google Scholar 

  45. Zoch M, Clemens T, Riddle R (2016) New insights into the biology of osteocalcin. Bone 82:42–49

    Article  CAS  PubMed  Google Scholar 

  46. Shioi A, Katagi M, Okuno Y et al (2002) Induction of bone type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor alpha and oncostatin M derived from macrophages. Circ Res 91:916

    Article  CAS  Google Scholar 

  47. Yao Y, Bennett BJ, Wang X et al (2010) Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 107:48594

    Article  CAS  Google Scholar 

  48. Wang S, Chen Q, Simon TC et al (2003) Bone morphogenetic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 63:2037–2049

    Article  CAS  PubMed  Google Scholar 

  49. Dorai H, Vukicevic S, Sampath TK (2000) Bone morphogenetic protein-7 (osteogenic protein-1) inhibits smooth muscle cell proliferation and stimulates the expression of markers that are characteristic of SMC phenotype in vitro. J Cell Physiol 184:37–45

    Article  CAS  PubMed  Google Scholar 

  50. Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:53743

    Article  Google Scholar 

  51. Demetriou M, Binkert C, Sukhu B et al (1996) Fetuin/alpha2-HS glycoprotein is transforming growth factor-beta type II receptor mimic and cytokine antagonist. J Biol Chem 271:12755–12761

    Article  CAS  PubMed  Google Scholar 

  52. Hernández N, Duque G, Braun R et al (2017) Vascular calcification: current genetics underlying this complex phenomenon. Chin Med J 130(9):1113–1121

    Article  CAS  Google Scholar 

  53. Rutsch F, Nitschke Y, Terkeltaub R (2012) Genetics in arterial calcification pieces of a puzzle and cogs in a wheel. Circ Res 109:57892

    Google Scholar 

  54. Bowman M, McNally E (2012) Genetic pathways of vascular calcification. Trends Cardiovasc Med 22:938

    Google Scholar 

  55. Nitschke Y, Baujat G, Botschen U et al (2012) Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet 90:25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. St Hilaire C, Ziegler SG, Markello T et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Donnell C, Kavousi M, Smith AV et al (2011) Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation 124:2855–2864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lange L, Lange E, Bielak L et al (2002) Autosomal genome-wide scan for coronary artery calcification loci in sibships at high risk for hypertension. Arterioscler Thromb Vasc Biol 22:418–423

    Article  CAS  PubMed  Google Scholar 

  59. Thanassoulis G, Campbell CY, Owens D et al (2013) Genetic associations with valvular calcification and aortic stenosis. N Engl J Med 368:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thériault S, Dina C, Zeitoun DM et al (2019) Genetic association analyses highlight IL6, ALPL, and NAV1 as 3 new susceptibility genes underlying calcific aortic valve stenosis. Circ Genom Precis Med 12:431–441

    Article  CAS  Google Scholar 

  61. Chan S (2017) Phosphate binders in patients with chronic kidney disease. Aust Prescr 40(1):10–14

    PubMed  PubMed Central  Google Scholar 

  62. Schantl A, Ivarsson M, Leroux J (2018) Investigational pharmacological treatments for vascular calcification. Adv Therap:1–16

  63. Torres PA, De Broe M (2012) Calcium-sensing receptor, calcimimetics, and cardiovascular calcifications in chronic kidney disease. Kidney Int 82(1):19–25

    Article  CAS  PubMed  Google Scholar 

  64. de Francisco ALM, Piñera C, Palomar R et al (2006) Impact of treatment with calcimimetics on hyperparathyroidism and vascular mineralization. JASN 17(12:3):S281–S285

    Article  PubMed  CAS  Google Scholar 

  65. Lim K, Hamano T, Thadhani R (2018) Vitamin D and calcimimetics in cardiovascular disease. Semin Nephrol 38(3):251–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mozos I, Marginean O (2015) Links between vitamin D deficiency and cardiovascular diseases. Biomed Res Int:1–12

  67. Li Q, Sundberg JP, Levine MA et al (2015) The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle 14(7):1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shea MK, Booth SL (2019) Vitamin K, vascular calcification, and chronic kidney disease: current evidence and unanswered questions. Curr Dev Nutr 3(9):nzz077

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shea MK, Holden MR (2012) Vitamin K status and vascular calcification: evidence from observational and clinical studies. Adv Nutr 3(2):158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Adema AY, de Jong MA, de Brost MH et al (2016) Phosphate binding therapy to lower serum fibroblast-growth-Factor-23 concentrations in chronic kidney disease: rationale and study design of the Sevelamer on FGF23 Trial (SoFT). Nephron 134(4):215–220

    Article  CAS  PubMed  Google Scholar 

  71. Ghorbanihaghjo A, Argani H, Golmohamadi Z (2018) Linkage of fibroblast growth factor 23 and phosphate in serum: phosphate and fibroblast growth factor 23 reduction by increasing dose of sevelamer. J Bone Metab 25(3):153–159

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chertow GM, Burke SK, Raggi P (2002) Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62(1):245–252

    Article  CAS  PubMed  Google Scholar 

  73. Mathew S, Lund RJ, Chaudhary LR et al (2008) Vitamin D receptor activators can protect against vascular calcification. J Am Soc Nephrol 19(8):1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheng S, Coyne D (2006) Oral paricalcitol for the treatment of secondary hyperparathyroidism in chronic kidney disease. Ther Clin Risk Manag 2(3):297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bellasi A, Reiner M, Pétavy F et al (2013) Presence of valvular calcification predicts the response to cinacalcet: data from the ADVANCE study. J Heart Valve Dis 22(3):391–399

    PubMed  Google Scholar 

  76. Anis KH, Pober D, Rosas SE (2020) Vitamin D analogues and coronary calcification in CKD stages 3 and 4: a randomized controlled trial of calcitriol versus paricalcitol. Kidney Med 2(4):450–458

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lomashvili AK, Monier-Faugere MC, Wang X et al (2009) Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int 75(6):617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Otero JE, Gottesman GS, McAlister WH et al (2013) Severe skeletal toxicity from protracted etidronate therapy for generalized arterial calcification of infancy. J Bone Miner Res 28(2):419–430

    Article  CAS  PubMed  Google Scholar 

  79. Giger EV, Castagner B, Leroux JC (2013) Biomedical applications of bisphosphonates. J Control Release 167(2):175–188

    Article  CAS  PubMed  Google Scholar 

  80. Li Q, Kingman J, Sundberg JP et al (2018) Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6−/−). Oncotarget 9(56):30721–30730

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oikonomaki T, Papasotiriou M, Ntrinias T et al (2019) The effect of vitamin K2 supplementation on vascular calcification in haemodialysis patients: a 1-year follow-up randomized trial. Int Urol Nephrol 51(11):2037–2044

    Article  PubMed  Google Scholar 

  82. De Vriese AS, Caluwé R, Pyfferoen L et al (2020) Multicenter randomized controlled trial of vitamin K antagonist replacement by rivaroxaban with or without vitamin K2 in hemodialysis patients with atrial fibrillation: the Valkyrie study. J Am Soc Nephrol 31(1):186–196

    Article  PubMed  Google Scholar 

  83. Tantisattamo E, Han KH, Neill WCO (2014) Increased vascular calcification in patients receiving warfarin. Arterioscler Thromb Vasc Biol 34:1–6

    Google Scholar 

  84. Fusaro MD, Alessandro C, Noale M et al (2017) Low vitamin K1 intake in haemodialysis patients. Clin Nutr 36(2):601–607

    Article  CAS  PubMed  Google Scholar 

  85. Brandenburg VM, Reinartz S, Kaesler N et al (2017) Slower progress of aortic valve calcification with vitamin K supplementation: results from a prospective interventional proof-of-concept study. Circulation 135(21):2081–2083

    Article  PubMed  Google Scholar 

  86. Haroon SW, Tai BC, Ling LH et al (2020) Treatment to reduce vascular calcification in hemodialysis patients using vitamin K (Trevasc-HDK): a study protocol for a randomized controlled trial. Medicine (Baltimore) 99(36)

  87. Schlieper G, Brandenburget V, Ketteler M et al (2009) Sodium thiosulfate in the treatment of calcific uremic arteriolopathy. Nat Rev Nephrol 5:539–543

    Article  CAS  PubMed  Google Scholar 

  88. Pasch A, Schaffner T, Huynh-Do U et al (2008) Sodium thiosulfate prevents vascular calcifications in uremic rats. Kidney Int 74:1444–1453

    Article  CAS  PubMed  Google Scholar 

  89. Generali JA, Cada DJ (2015) Sodium thiosulfate: calciphylaxis. Hosp Pharm 50(11):975–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Henley C, Davis J, Miller G et al (2009) The calcimimetic AMG 641 abrogates parathyroid hyperplasia, bone and vascular calcification abnormalities in uremic rats. Eur J Pharmacol 616(1–3):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zu Y, Lu X, Song J et al (2019) Cinacalcet treatment significantly improves all-cause and cardiovascular survival in dialysis patients: results from a meta-analysis. Kidney Blood Press Res 44:1327–1338

    Article  CAS  PubMed  Google Scholar 

  92. Ferrer MD, Ketteler M, Tur F et al (2018) Characterization of SNF472 pharmacokinetics and efficacy in uremic and non-uremic rats models of cardiovascular calcification. PLoS One 13:1–19

    Article  Google Scholar 

  93. Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338

    Article  CAS  PubMed  Google Scholar 

  94. Grases F, Sanchis P, Perello J et al (2006) Phytate (myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front Biosci 11:136–142

    Article  CAS  PubMed  Google Scholar 

  95. Hedayati SS (2020) A novel treatment for vascular calcification in patients with dialysis-dependent chronic kidney disease. Circulation 141(9):740–742

    Article  PubMed  Google Scholar 

  96. Schantl AE, Verhulst A, Neven E et al (2020) Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat Commun 11:721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dougall W, Chaisson M (2006) Monoclonal antibody targeting RANKL as a therapy for cancer-induced bone diseases. Clin Calcium 16(4):627–635

    CAS  PubMed  Google Scholar 

  98. Helas S, Goettsch C, Schoppet M et al (2009) Inhibition of receptor activator of NF-κB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol 175(2):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Savinov AY, Salehi M, Yadav MC et al (2015) Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. J Am Heart Assoc 4:1–13

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Amity University for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanderdeep Tandon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human rights

No human studies were carried out by the authors for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Tandon, S. & Tandon, C. An update on vascular calcification and potential therapeutics. Mol Biol Rep 48, 887–896 (2021). https://doi.org/10.1007/s11033-020-06086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06086-y

Keywords

Navigation