Skip to main content

Advertisement

Log in

Lymphatic vessels in patients with crescentic glomerulonephritis: association with renal pathology and prognosis

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Various immune cells, including T cells, B cells, macrophages, and neutrophils contribute to the development of crescentic glomerulonephritis. Previous animal studies have suggested that lymphangiogenesis is involved in the migration of inflammatory cells and the activation of adaptive immunity. However, the extent of the association between lymphatic vessels and crescentic glomerulonephritis severity and prognosis remains unknown.

Methods and results

In this study, we assessed lymphatic vessel density in 71 patients with crescentic glomerulonephritis who underwent renal biopsies between June 2017 and June 2022. By immunohistochemistry and immunofluorescence, we identified increased lymphatic vessel density in the kidneys of patients with crescentic glomerulonephritis compared to controls. Lymphatic vessels were categorized as total, periglomerular, and interstitial. Spearman's rank correlation analysis showed a positive correlation between total and periglomerular lymphatic vessel density and glomerular crescent proportion. High lymphatic vessel density (total and periglomerular) correlated with declining kidney function, increased proteinuria, and severe glomerular and interstitial pathology. Interstitial lymphatic vessel density had minimal relationship with renal lesions. After a median duration of 13 months of follow-up, higher total and periglomerular lymphatic vessel density was associated with poorer prognosis. Transcriptomic analysis revealed increased immune cell activation and migration in crescentic glomerulonephritis patients compared to healthy controls. Periglomerular lymphatic vessels might play a significant role in immune cell infiltration and renal injury.

Conclusion

Elevated lymphatic vessel density in patients with crescentic glomerulonephritis is associated with poor prognosis and may serve as a predictive factor for adverse outcomes in these patients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The corresponding author can provide the supporting data of this study upon reasonable request.

References

  1. Segelmark M, Hellmark T (2019) Anti-glomerular basement membrane disease: an update on subgroups, pathogenesis and therapies. Nephrol Dial Transplant 34(11):1826–1832. https://doi.org/10.1093/ndt/gfy327

    Article  CAS  PubMed  Google Scholar 

  2. Chen S, Tang Z, Xiang H et al (2016) Etiology and outcome of crescentic glomerulonephritis from a single center in China: a 10-year review. Am J Kidney Dis 67(3):376–383. https://doi.org/10.1053/j.ajkd.2015.07.034

    Article  PubMed  Google Scholar 

  3. Linke A, Tiegs G, Neumann K (2022) Pathogenic T-Cell responses in immune-mediated glomerulonephritis. Cells 11(10):1625. https://doi.org/10.3390/cells11101625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen A, Lee K, Guan T et al (2020) Role of CD8+ T cells in crescentic glomerulonephritis. Nephrol Dial Transplant 35(4):564–572. https://doi.org/10.1093/ndt/gfz043

    Article  CAS  PubMed  Google Scholar 

  5. Han Y, Ma FY, Di Paolo J et al (2018) An inhibitor of spleen tyrosine kinase suppresses experimental crescentic glomerulonephritis. Int J Immunopathol Pharmacol. https://doi.org/10.1177/2058738418783404

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gu QH, Huynh M, Shi Y et al (2020) Experimental antiglomerular basement membrane GN induced by a peptide from actinomyces. J Am Soc Nephrol 31(6):1282–1295. https://doi.org/10.1681/ASN.2019060619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rousselle A, Sonnemann J, Amann K et al (2022) CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Ann Rheum Dis 81(8):1162–1172. https://doi.org/10.1136/annrheumdis-2021-221984

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Huang XR, Yang F et al (2022) Single-cell RNA sequencing identified novel Nr4a1(+) Ear2(+) anti-inflammatory macrophage phenotype under myeloid-TLR4 dependent regulation in anti-glomerular basement membrane (GBM) crescentic glomerulonephritis (cGN). Adv Sci (Weinh). 9(18):e2200668. https://doi.org/10.1002/advs.202200668

    Article  CAS  PubMed  Google Scholar 

  9. Binda V, Moroni G, Messa P (2018) ANCA-associated vasculitis with renal involvement. J Nephrol 31(2):197–208. https://doi.org/10.1007/s40620-017-0412-z

    Article  CAS  PubMed  Google Scholar 

  10. Jackson DG (2019) Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 78–79:219–235. https://doi.org/10.1016/j.matbio.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Pei G, Yao Y, Yang Q et al (2019) Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv 5(6):eaaw5075. https://doi.org/10.1126/sciadv.aaw5075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jafree DJ, Long DA (2020) Beyond a passive conduit: implications of lymphatic biology for kidney diseases. J Am Soc Nephrol 31(6):1178–1190. https://doi.org/10.1681/ASN.2019121320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zarjou A, Black LM, Bolisetty S et al (2019) Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. Lab Invest 99(9):1376–1388. https://doi.org/10.1038/s41374-019-0259-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pei G, Zeng R, Han M et al (2014) Renal interstitial infiltration and tertiary lymphoid organ neogenesis in IgA nephropathy. Clin J Am Soc Nephrol 9(2):255–264. https://doi.org/10.2215/CJN.01150113

    Article  CAS  PubMed  Google Scholar 

  15. Sethi S, Haas M, Markowitz GS et al (2016) Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol 27(5):1278–1287. https://doi.org/10.1681/ASN.2015060612

    Article  PubMed  Google Scholar 

  16. Vosough Z, Golbini S, Sharbatdaran M et al (2021) D2–40 a helpful marker in assessment of lymphatic vessel invasion in carcinoma of breast. Iran J Pathol 16(2):96–102. https://doi.org/10.30699/IJP.2020.114511.2245

    Article  PubMed  Google Scholar 

  17. Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  18. Zimmer JK, Dahdal S, Muhlfeld C et al (2010) Lymphangiogenesis is upregulated in kidneys of patients with multiple myeloma. Anat Rec (Hoboken) 293(9):1497–1505. https://doi.org/10.1002/ar.21189

    Article  PubMed  Google Scholar 

  19. Sakamoto I, Ito Y, Mizuno M et al (2009) Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int 75(8):828–838. https://doi.org/10.1038/ki.2008.661

    Article  CAS  PubMed  Google Scholar 

  20. Yan P, Ke B, Song J et al (2023) Identification of immune-related molecular clusters and diagnostic markers in chronic kidney disease based on cluster analysis. Front Genet. https://doi.org/10.3389/fgene.2023.1111976

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng X, Gao J, Zhao F (2022) Identification of differentially expressed genes and pathways in kidney of ANCA-associated vasculitis by integrated bioinformatics analysis. Ren Fail 44(1):204–216. https://doi.org/10.1080/0886022X.2022.2030755

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen L, Chou CL, Knepper MA (2021) Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron. J Am Soc Nephrol 32(4):886–896. https://doi.org/10.1681/ASN.2020101407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Svenningsen P, Hinrichs GR, Zachar R et al (2017) Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 469(11):1415–1423. https://doi.org/10.1007/s00424-017-2014-y

    Article  CAS  PubMed  Google Scholar 

  24. Kitching AR, Holdsworth SR, Tipping PG (1999) IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol 10(4):752–759. https://doi.org/10.1681/ASN.V104752

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Jayne DRW, Zhao MH (2017) Complement in ANCA-associated vasculitis: mechanisms and implications for management. Nat Rev Nephrol 13(6):359–367. https://doi.org/10.1038/nrneph.2017.37

    Article  CAS  PubMed  Google Scholar 

  26. Riedel JH, Turner JE, Panzer U (2021) T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 385(2):281–292. https://doi.org/10.1007/s00441-020-03403-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schena FP (1999) Cytokine network and resident renal cells in glomerular diseases. Nephrol Dial Transplant 14(Suppl 1):22–26. https://doi.org/10.1093/ndt/14.suppl_1.22

    Article  PubMed  Google Scholar 

  28. Schreiber A, Rolle S, Peripelittchenko L et al (2010) Phosphoinositol 3-kinase-gamma mediates antineutrophil cytoplasmic autoantibody-induced glomerulonephritis. Kidney Int 77(2):118–128. https://doi.org/10.1038/ki.2009.420

    Article  CAS  PubMed  Google Scholar 

  29. Prevo R, Banerji S, Ferguson DJ et al (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276(22):19420–19430. https://doi.org/10.1074/jbc.M011004200

    Article  CAS  PubMed  Google Scholar 

  30. Lee HW, Qin YX, Kim YM et al (2011) Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res 343(2):429–444. https://doi.org/10.1007/s00441-010-1098-x

    Article  CAS  PubMed  Google Scholar 

  31. Muchowicz A, Wachowska M, Stachura J et al (2017) Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur J Cancer 83:19–27. https://doi.org/10.1016/j.ejca.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  32. Lund AW, Wagner M, Fankhauser M et al (2016) Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest 126(9):3389–3402. https://doi.org/10.1172/JCI79434

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China for General Programs (Grants No. 82070739, 82370699) and the Key Program of National Natural Science Foundation of China (Grant No. 82230021); the General Program of National Natural Sciences Foundation of China (Grant No.82170702); the National key research and development program (Grant No. 2021YFC2500204).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GP, RZ, and GX; Methodology: GP; Software: ZW; Validation: DG, and SW; Formal Analysis: GP, YL, RZ, and GX; Investigation: DH, ZW, and SW; Resources: GP, RZ, and GX; Data Curation: DH; Writing – Original Draft Preparation: GP, DH, and ZW; Writing – Review & Editing: DH; Visualization: DH, and ZW; Supervision: GP, RZ, and GX; Project Administration: GP, RZ, and GX.

Corresponding authors

Correspondence to Guangchang Pei, Rui Zeng or Gang Xu.

Ethics declarations

Conflict of interest

The authors of this article declare no conflicts of interest. The findings presented in this paper have not been previously published in any form, except for abstracts.

Ethical approval

This study followed the principles of the Helsinki Declaration and received approval from the Research Ethics Committee of Tongji Hospital, Huazhong University of Science and Technology (TJ-IRB202303121).

Human and animal rights

The present study complies with the guidelines for human studies. No animals were used in this study.

Informed consent

Due to the nature of the study being observational, no interventions were implemented on the participants, and no identifiable patient information was included. This was done to ensure the patients’ confidentiality and privacy. Therefore, all individuals involved in the research were exempted from providing informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40620_2024_1903_MOESM1_ESM.pdf

SFigure1. The periglomerular LVs play a more significant role in immune cell infiltration and kidney injury in crescentic glomerulonephritis (cGN) patients compared to interstitial LVs. A. Enrichment pathways of DEGs between healthy controls and cGN patients’ renal biopsy samples based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Nor: Healthy controls; CGN: crescentic glomerulonephritis patients. B. Expression levels of LYVE1 in renal biopsy samples (periglomerular) from healthy controls and cGN patients. C. Expression levels of LYVE1 in the renal interstitial regions of patients with various kidney diseases. LD: Healthy Living Donor; HP: Arterial Hypertension; DN: Diabetic Nephropathy; FSGS: Focal Segmental Glomerulosclerosis; IgAN: IgA Nephropathy; LN: Lupus Nephritis; MN: Membranous Glomerulonephropathy; MCD: Minimal Change Disease; TBMD: Thin Basement Membrane Disease; CGN: Vasculitis. D. GSEA of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating a significant enrichment of “Cell adhesion molecules”, “Chemokine signaling pathway”, “Cytokine-cytokine receptor interaction”, “JAK-STAT signaling pathway” and “PI3K-Akt signaling pathway” in cGN patients with high expression of LYVE1 compared to those with low expression. E. Correlation analysis between LYVE1 expression and immune infiltration. MDSC: Myeloid-derived suppressor cell; Act.DC: Activated dendritic cell; Mast: Mast cell; CD8+ Tem: Effector memeory CD8+ T cell; Tregs: Regulatory T cell; Macro: Macrophage; CD8+ Tcm: Central memory CD8+ T cell; CD4+ Tcm: Central memory CD4+ T cell; Bm: Memory B cell; γδ T: Gamma delta T cell; Act.CD4+ T: Activated CD4+ T cell; Th2: Type 2 T helper cell; Esoi: Eosinophil; Act.CD8+ T: Activated CD8+ T cell; CD4+ Tem: Effector memeory CD4+ T cell; Act. B: Activated B cell; Tfh: T follicular helper cell; Neutro: Neutrophil; NK: Natural killer cell; Th1: Type 1 T helper cell; Mono: Monocyte; Imm.B: Immature B cell; NKT: Natural killer T cell; Imm.DC: Immature dendritic cell; CD56bright NK: CD56bright natural killer cell; PDC: Plasmacytoid dendritic cell; CD56dim NK: CD56dim natural killer cell; Th17: Type 17 T helper cell. F. Analysis of the correlation between LYVE1 expression and different inflammatory cells. (Nor: Healthy controls; CGN: crescentic glomerulonephritis patients. ***P<0.001; ** P<0.01; * P<0.05). Supplementary file1 (PDF 786 KB)

Supplementary file2 (XLSX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Wang, Z., Wang, S. et al. Lymphatic vessels in patients with crescentic glomerulonephritis: association with renal pathology and prognosis. J Nephrol (2024). https://doi.org/10.1007/s40620-024-01903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40620-024-01903-0

Keywords

Navigation