Skip to main content

Advertisement

Log in

Noncoding RNAs associated with IgA nephropathy

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

IgA nephropathy (IgAN) is one of the most common glomerulonephritides. The disease is characterized by haematuria, proteinuria, deposition of galactose-deficient IgA1 in the glomerular mesangium and mesangial hypercellularity, further leading to extracellular matrix expansion. Kidney biopsy is the gold standard for IgAN diagnosis. Due to the invasiveness of renal biopsy, there is an unmet need for noninvasive biomarkers to diagnose and estimate the severity of IgAN. Understanding the role of RNA molecules as genetic markers to target diseases may allow developing therapeutic and diagnostic markers. In this review we have focused on intrarenal, extrarenal and extracellular noncoding RNAs involved in the progression of IgAN. This narrative review summarizes the pathogenesis of IgAN along with the correlation of noncoding RNA molecules such as microRNAs, small interfering RNAs, circular RNAs and long non-coding RNAs that play an important role in regulating gene expression, and that represent another type of regulation affecting the expression of specific glycosyltranferases, a key element contributing to the development of IgAN.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schena FP, Nistor I (2018) Epidemiology of IgA nephropathy: a global perspective. Semin Nephrol 38(5):435–442. https://doi.org/10.1016/j.semnephrol.2018.05.013

    Article  PubMed  Google Scholar 

  2. McGrogan A, Franssen CF, de Vries CS (2011) The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transpl 26(2):414–430. https://doi.org/10.1093/ndt/gfq665

    Article  Google Scholar 

  3. Berthoux F, Mohey H, Laurent B, Mariat C, Afiani A, Thibaudin L (2011) Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol 22(4):752–761. https://doi.org/10.1681/asn.2010040355

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moresco RN, Speeckaert MM, Delanghe JR (2015) Diagnosis and monitoring of IgA nephropathy: the role of biomarkers as an alternative to renal biopsy. Autoimmun Rev 14(10):847–853. https://doi.org/10.1016/j.autrev.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  5. Chang S, Li XK (2020) The role of immune modulation in pathogenesis of IgA nephropathy. Front Med 7:92. https://doi.org/10.3389/fmed.2020.00092

    Article  Google Scholar 

  6. Rajasekaran A, Julian BA, Rizk DV (2021) IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci 361(2):176–194. https://doi.org/10.1016/j.amjms.2020.10.003

    Article  PubMed  Google Scholar 

  7. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG, Julian BA (2011) The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22(10):1795–1803. https://doi.org/10.1681/asn.2011050464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hassler JR (2020) IgA nephropathy: a brief review. Semin Diagn Pathol 37(3):143–147. https://doi.org/10.1053/j.semdp.2020.03.001

    Article  PubMed  Google Scholar 

  9. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  10. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):925–933. https://doi.org/10.4161/rna.24604

    Article  CAS  PubMed  Google Scholar 

  11. Zuo N, Li Y, Liu N, Wang L (2017) Differentially expressed long non-coding RNAs and mRNAs in patients with IgA nephropathy. Mol Med Rep 16(5):7724–7730. https://doi.org/10.3892/mmr.2017.7542

    Article  CAS  PubMed  Google Scholar 

  12. Luo ZF, Tang D, Xu HX, Lai LS, Chen JJ, Lin H, Yan Q, Zhang XZ, Wang G, Dai Y, Sui WG (2020) Differential expression of transfer RNA-derived small RNAs in IgA nephropathy. Medicine 99(48):e23437. https://doi.org/10.1097/md.0000000000023437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu H, Liu D, Liu Y, Xia M, Li Y, Li M, Liu H (2020) Comprehensive analysis of circRNA expression profiles and circRNA-associated competing endogenous RNA networks in IgA nephropathy. PeerJ 8:e10395. https://doi.org/10.7717/peerj.10395

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Wu Q, Wang J, Li L, Sun X, Zhang Z, Zhang L (2020) Co-delivery of p38α MAPK and p65 siRNA by novel liposomal glomerulus-targeting nano carriers for effective immunoglobulin a nephropathy treatment. J Control Release 320:457–468. https://doi.org/10.1016/j.jconrel.2020.01.024

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Ye M, Zhao Q, Xia M, Liu D, He L, Chen G, Peng Y, Liu H (2019) Loss of the golgi matrix protein 130 cause aberrant IgA1 glycosylation in IgA nephropathy. Am J Nephrol 49(4):307–316. https://doi.org/10.1159/000499110

    Article  CAS  PubMed  Google Scholar 

  16. Makita Y, Suzuki H, Kano T, Takahata A, Julian BA, Novak J, Suzuki Y (2020) TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int 97(2):340–349. https://doi.org/10.1016/j.kint.2019.08.022

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Shen E, Wang Y, Li J, Cheng D, Chen Y, Gui D, Wang N (2016) Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci Rep 6:31506. https://doi.org/10.1038/srep31506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bao H, Chen H, Zhu X, Zhang M, Yao G, Yu Y, Qin W, Zeng C, Zen K, Liu Z (2014) MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy. Kidney Int 85(3):624–635. https://doi.org/10.1038/ki.2013.469

    Article  CAS  PubMed  Google Scholar 

  19. Bao H, Hu S, Zhang C, Shi S, Qin W, Zeng C, Zen K, Liu Z (2014) Inhibition of miRNA-21 prevents fibrogenic activation in podocytes and tubular cells in IgA nephropathy. Biochem Biophys Res Commun 444(4):455–460. https://doi.org/10.1016/j.bbrc.2014.01.065

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC (2011) Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis Markers 30(4):171–179. https://doi.org/10.3233/dma-2011-0766

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, Szeto CC (2010) Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Investig 90(1):98–103. https://doi.org/10.1038/labinvest.2009.118

    Article  CAS  PubMed  Google Scholar 

  22. Wen L, Zhao Z, Xiao J, Wang Z, He X, Birn H (2018) Renal miR-148b is associated with megalin down-regulation in IgA nephropathy. Biosci Rep. https://doi.org/10.1042/bsr20181578

  23. Li C, Shi J, Zhao Y (2018) MiR-320 promotes B cell proliferation and the production of aberrant glycosylated IgA1 in IgA nephropathy. J Cell Biochem 119(6):4607–4614. https://doi.org/10.1002/jcb.26628

    Article  CAS  PubMed  Google Scholar 

  24. Liu D, Xia M, Liu Y, Tan X, He L, Liu Y, Chen G, Liu H (2020) The upregulation of miR-98-5p affects the glycosylation of IgA1 through cytokines in IgA nephropathy. Int Immunopharmacol 82:106362. https://doi.org/10.1016/j.intimp.2020.106362

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Xia M, Peng L, Liu H, Chen G, Wang C, Yuan D, Liu Y, Liu H (2021) Downregulation of miR-214-3p attenuates mesangial hypercellularity by targeting PTEN-mediated JNK/c-Jun signaling in IgA nephropathy. Int J Biol Sci 17(13):3343–3355. https://doi.org/10.7150/ijbs.61274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hennino MF, Buob D, Van der Hauwaert C, Gnemmi V, Jomaa Z, Pottier N, Savary G, Drumez E, Noël C, Cauffiez C, Glowacki F (2016) miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy. Sci Rep 6:27209. https://doi.org/10.1038/srep27209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rudnicki M, Perco P, Barbara DH, Leierer J, Heinzel A, Mühlberger I, Schweibert N, Sunzenauer J, Regele H, Kronbichler A (2016) Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Investig 46(3):213–226. https://doi.org/10.1111/eci.12585

    Article  CAS  Google Scholar 

  28. Liang Y, Zhao G, Tang L, Zhang J, Li T, Liu Z (2016) MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients. Exp Cell Res 347(2):312–321. https://doi.org/10.1016/j.yexcr.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  29. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y (2008) Microarray analysis of micro-ribonucleic acid expression in primary immunoglobulin A nephropathy. Saudi Med J 29(10):1388–1393

    PubMed  Google Scholar 

  30. Pawluczyk IZA, Didangelos A, Barbour SJ, Er L, Becker JU, Martin R, Taylor S, Bhachu JS, Lyons EG, Jenkins RH, Fraser D, Molyneux K, Perales-Patón J, Saez-Rodriguez J, Barratt J (2021) Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int 99(5):1127–1139. https://doi.org/10.1016/j.kint.2020.12.028

    Article  CAS  PubMed  Google Scholar 

  31. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104(9):3432–3437. https://doi.org/10.1073/pnas.0611192104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A, Witkowski JM (2019) T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol 23(3):291–303. https://doi.org/10.1007/s10157-018-1665-0

    Article  CAS  PubMed  Google Scholar 

  33. Serino G, Sallustio F, Cox SN, Pesce F, Schena FP (2012) Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol 23(5):814–824. https://doi.org/10.1681/asn.2011060567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cox SN, Sallustio F, Serino G, Pontrelli P, Verrienti R, Pesce F, Torres DD, Ancona N, Stifanelli P, Zaza G, Schena FP (2010) Altered modulation of WNT-beta-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney Int 78(4):396–407. https://doi.org/10.1038/ki.2010.138

    Article  CAS  PubMed  Google Scholar 

  35. Serino G, Sallustio F, Curci C, Cox SN, Pesce F, De Palma G, Schena FP (2015) Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol Dial Transpl 30(7):1132–1139. https://doi.org/10.1093/ndt/gfv032

    Article  CAS  Google Scholar 

  36. Serino G, Pesce F, Sallustio F, De Palma G, Cox SN, Curci C, Zaza G, Lai KN, Leung JC, Tang SC, Papagianni A, Stangou M, Goumenos D, Gerolymos M, Takahashi K, Yuzawa Y, Maruyama S, Imai E, Schena FP (2016) In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int 89(3):683–692. https://doi.org/10.1038/ki.2015.333

    Article  CAS  PubMed  Google Scholar 

  37. Zhai Y, Qi Y, Long X, Dou Y, Liu D, Cheng G, Xiao J, Liu Z, Zhao Z (2019) Elevated hsa-miR-590-3p expression down-regulates HMGB2 expression and contributes to the severity of IgA nephropathy. J Cell Mol Med 23(11):7299–7309. https://doi.org/10.1111/jcmm.14582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu BY, Meng SJ, Shi SF, Liu LJ, Lv JC, Zhu L, Zhang H (2020) MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol 33(3):551–560. https://doi.org/10.1007/s40620-019-00682-3

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Liao Y, Wang L, Lin Y, Ye Z, Zeng X, Liu X, Wei F, Yang N (2020) Small RNA deep sequencing reveals novel miRNAs in peripheral blood mononuclear cells from patients with IgA nephropathy. Mol Med Rep 22(4):3378–3386. https://doi.org/10.3892/mmr.2020.11405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang X, Wu D, Du H, Nie F, Pang X, Xu Y (2017) MicroRNA-135a is involved in podocyte injury in a transient receptor potential channel 1-dependent manner. Int J Mol Med 40(5):1511–1519. https://doi.org/10.3892/ijmm.2017.3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin LW, Ye HY, Xu XY, Zheng Y, Chen Y (2018) MiR-133a/133b inhibits Treg differentiation in IgA nephropathy through targeting FOXP3. Biomed Pharmacother 101:195–200. https://doi.org/10.1016/j.biopha.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  42. Shen M, Pan X, Gao Y, Ye H, Zhang J, Chen Y, Pan M, Huang W, Xu X, Zhao Y, Jin L (2021) LncRNA CRNDE exacerbates IgA nephropathy progression by promoting NLRP3 inflammasome activation in macrophages. Immunol Investig. https://doi.org/10.1080/08820139.2021.1989461

    Article  Google Scholar 

  43. Hu S, Bao H, Xu X, Zhou X, Qin W, Zeng C, Liu Z (2015) Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett 589(24):4019–4025. https://doi.org/10.1016/j.febslet.2015.10.033

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Zhang X, Peng W, Wei M, Qin W (2017) MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. Int Urol Nephrol 49(2):353–361. https://doi.org/10.1007/s11255-016-1444-3

    Article  CAS  PubMed  Google Scholar 

  45. Duan ZY, Cai GY, Li JJ, Bu R, Chen XM (2017) Urinary erythrocyte-derived miRNAs: emerging role in IgA nephropathy. Kidney Blood Press Res 42(4):738–748. https://doi.org/10.1159/000481970

    Article  CAS  PubMed  Google Scholar 

  46. Wu J, Zhang H, Wang W, Zhu M, Qi LW, Wang T, Cheng W, Zhu J, Shan X, Huang Z, Zhang L, Chen Y, Sun B, Zhao X, Qian J, Zhu W, Zhou X, Xing C (2018) Plasma microRNA signature of patients with IgA nephropathy. Gene 649:80–86. https://doi.org/10.1016/j.gene.2018.01.050

    Article  CAS  PubMed  Google Scholar 

  47. Kouri NM, Stangou M, Lioulios G, Mitsoglou Z, Serino G, Chiurlia S, Cox SN, Stropou P, Schena FP, Papagianni A (2021) Serum levels of miR-148b and Let-7b at diagnosis may have important impact in the response to treatment and long-term outcome in IgA nephropathy. J Clin Med. https://doi.org/10.3390/jcm10091987

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hu H, Wan Q, Li T, Qi D, Dong X, Xu Y, Chen H, Liu H, Huang H, Wei C, Zhou W, Jiang S, Mo Z, Liao F, Xu Q, He Y (2020) Circulating MiR-29a, possible use as a biomarker for monitoring IgA nephropathy. Iran J Kidney Dis 14(2):107–118

    PubMed  Google Scholar 

  49. Szeto CC, Wang G, Ng JK, Kwan BC, Mac-Moune Lai F, Chow KM, Luk CC, Lai KB, Li PK (2019) Urinary miRNA profile for the diagnosis of IgA nephropathy. BMC Nephrol 20(1):77. https://doi.org/10.1186/s12882-019-1267-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luan R, Tian G, Ci X, Zheng Q, Wu L, Lu X (2021) Differential expression analysis of urinary exosomal circular RNAs in patients with IgA nephropathy. Nephrology (Carlton) 26(5):432–441. https://doi.org/10.1111/nep.13855

    Article  CAS  PubMed  Google Scholar 

  51. Luan R, Tian G, Zhang H, Shi X, Li J, Zhang R, Lu X (2021) Urinary exosomal circular RNAs of sex chromosome origin are associated with gender-related risk differences of clinicopathological features in patients with IgA nephropathy. J Nephrol. https://doi.org/10.1007/s40620-021-01118-7

    Article  PubMed  Google Scholar 

  52. Duan ZY, Cai GY, Bu R, Lu Y, Hou K, Chen XM (2016) Selection of urinary sediment miRNAs as specific biomarkers of IgA nephropathy. Sci Rep 6:23498. https://doi.org/10.1038/srep23498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang G, Kwan BC, Lai FM, Chow KM, Kam-Tao Li P, Szeto CC (2010) Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis Markers 28(2):79–86. https://doi.org/10.3233/dma-2010-0687

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tan K, Chen J, Li W, Chen Y, Sui W, Zhang Y, Dai Y (2013) Genome-wide analysis of microRNAs expression profiling in patients with primary IgA nephropathy. Genome 56(3):161–169. https://doi.org/10.1139/gen-2012-0159

    Article  CAS  PubMed  Google Scholar 

  55. Szeto CC, Ching-Ha KB, Ka-Bik L, Mac-Moune LF, Cheung-Lung CP, Gang W, Kai-Ming C, Kam-Tao LP (2012) Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis Markers 33(3):137–144. https://doi.org/10.1155/2012/842764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trionfini P, Benigni A (2017) MicroRNAs as master regulators of glomerular function in health and disease. J Am Soc Nephrol 28(6):1686–1696. https://doi.org/10.1681/asn.2016101117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L, Duan A, Guo Q, Sun G, Cui W, Lu X, Yu H, Luo P (2021) Detection of microRNA-33a-5p in serum, urine and renal tissue of patients with IgA nephropathy. Exp Ther Med 21(3):205. https://doi.org/10.3892/etm.2021.9638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Min QH, Chen XM, Zou YQ, Zhang J, Li J, Wang Y, Li SQ, Gao QF, Sun F, Liu J, Xu YM, Lin J, Huang LF, Huang B (2018) Differential expression of urinary exosomal microRNAs in IgA nephropathy. J Clin Lab Anal. https://doi.org/10.1002/jcla.22226

    Article  PubMed  Google Scholar 

  59. Szeto CC, Ng JK, Fung WW, Chan GC, Luk CC, Lai KB, Wang G, Chow KM, Mac-Moune Lai F (2022) Urinary mi-106a for the diagnosis of IgA nephropathy: Liquid biopsy for kidney disease. Clin Chim Acta 530:81–86. https://doi.org/10.1016/j.cca.2022.03.006

    Article  CAS  PubMed  Google Scholar 

  60. Xiao B, Wang LN, Li W, Gong L, Yu T, Zuo QF, Zhao HW, Zou QM (2018) Plasma microRNA panel is a novel biomarker for focal segmental glomerulosclerosis and associated with podocyte apoptosis. Cell Death Dis 9(5):533. https://doi.org/10.1038/s41419-018-0569-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang N, Bu R, Duan Z, Zhang X, Chen P, Li Z, Wu J, Cai G, Chen X (2015) Profiling and initial validation of urinary microRNAs as biomarkers in IgA nephropathy. PeerJ 3:e990. https://doi.org/10.7717/peerj.990

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liang S, Cai GY, Duan ZY, Liu SW, Wu J, Lv Y, Hou K, Li ZX, Zhang XG, Chen XM (2017) Urinary sediment miRNAs reflect tubulointerstitial damage and therapeutic response in IgA nephropathy. BMC Nephrol 18(1):63. https://doi.org/10.1186/s12882-017-0482-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duan A, Liu L, Lou Y, Zhang D, Li H, Chen Y, Cui W, Miao L (2019) Diagnostic value of urinary miR-152–5p in patients with IgA nephropathy with elevated proteinuria levels. Clin Lab. https://doi.org/10.7754/Clin.Lab.2019.190111

    Article  PubMed  Google Scholar 

  64. Mbemi A, Khanna S, Njiki S, Yedjou CG (2020) Impact of gene-environment interactions on cancer development. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17218089

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sanchez-Rodriguez E, Southard CT, Kiryluk K (2021) GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin J Am Soc Nephrol 16(3):458–466. https://doi.org/10.2215/cjn.14031119

    Article  CAS  PubMed  Google Scholar 

  66. Zhong Z, Feng S, Shi D, Xu R, Yin P, Wang M, Mao H, Huang F, Li Z, Yu X, Li M (2019) Association of FCRL3 gene polymorphisms with IgA nephropathy in a Chinese Han population. DNA Cell Biol 38(10):1155–1165. https://doi.org/10.1089/dna.2019.4900

    Article  CAS  PubMed  Google Scholar 

  67. Feng Y, Su Y, Ma C, Jing Z, Yang X, Zhang D, Xie M, Li W, Wei J (2019) 3’UTR variants of TNS3, PHLDB1, NTN4, and GNG2 genes are associated with IgA nephropathy risk in Chinese Han population. Int Immunopharmacol 71:295–300. https://doi.org/10.1016/j.intimp.2019.03.041

    Article  CAS  PubMed  Google Scholar 

  68. Yamada K, Huang ZQ, Raska M, Reily C, Anderson JC, Suzuki H, Kiryluk K, Gharavi AG, Julian BA, Willey CD, Novak J (2020) Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis (Basel, Switzerland) 6(3):168–180. https://doi.org/10.1159/000505748

    Article  Google Scholar 

  69. Yang K, Zhang Y, Mai X, Hu L, Ma C, Wei J (2021) MIR17HG genetic variations affect the susceptibility of IgA nephropathy in Chinese Han people. Gene 800:145838. https://doi.org/10.1016/j.gene.2021.145838

    Article  CAS  PubMed  Google Scholar 

  70. Shajari N, Mansoori B, Davudian S, Mohammadi A, Baradaran B (2017) Overcoming the challenges of siRNA delivery: nanoparticle strategies. Curr Drug Deliv 14(1):36–46. https://doi.org/10.2174/1567201813666160816105408

    Article  CAS  PubMed  Google Scholar 

  71. Wu Y, Huang Q, Wang J, Dai Y, Xiao M, Li Y, Zhang H, Xiao W (2021) The feasibility of targeted magnetic iron oxide nanoagent for noninvasive IgA nephropathy diagnosis. Front Bioeng Biotechnol 9:755692. https://doi.org/10.3389/fbioe.2021.755692

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang X, Wu Y, Sun K, Tan J (2014) Effect of erythropoietin loading chitosan-tripolyphosphate nanoparticles on an IgA nephropathy rat model. Exp Ther Med 7(6):1659–1662. https://doi.org/10.3892/etm.2014.1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of Aarupadai Veedu Medical College and Hospital, Vinayaka Missions Research Foundation (Deemed to be University), and we would like to thank BioRender (https://biorender.com) used to create figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to content, writing, reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Sambandam Ravikumar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human and animal participation performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kademani, S.P., Nelaturi, P., Sathyasagar, K. et al. Noncoding RNAs associated with IgA nephropathy. J Nephrol 36, 911–923 (2023). https://doi.org/10.1007/s40620-022-01498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01498-4

Keywords

Navigation