Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12:2032–2045
CAS
PubMed
PubMed Central
Google Scholar
Ritz E, Zeng XX, Rychlík I (2011) Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol 170:19–27
PubMed
Google Scholar
Doshi SM, Friedman AN (2017) Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12:1366–1373
CAS
PubMed
PubMed Central
Google Scholar
Pugliese G (2014) Updating the natural history of diabetic nephropathy. Acta Diabetol 51:905–915
CAS
PubMed
Google Scholar
American Diabetes Association (2018) Standards of medical care in diabetes—2018. Diabetes Care 41(Suppl 1):S1–S159
Google Scholar
Mogensen CE, Christensen CK, Vittinghus E (1983) The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes 32(Suppl 2):64–78
PubMed
Google Scholar
Parving HH, Oxenbøll B, Svendsen PA, Christiansen JS, Andersen AR (1982) Early detection of patients at risk of developing diabetic nephropathy: a longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh). 100:550–555
CAS
PubMed
Google Scholar
Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H (1982) Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1:1430–1432
CAS
PubMed
Google Scholar
Ruggenenti P, Cravedi P, Remuzzi G (2010) The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol. 6:319–330
CAS
PubMed
Google Scholar
de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S et al (2004) Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110:921–927
PubMed
Google Scholar
Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS et al (2016) Clinical manifestations of kidney disease among US Adults with diabetes, 1988–2014. JAMA 316:602–610
PubMed
PubMed Central
Google Scholar
Kume S, Araki SI, Ugi S, Morino K, Koya D, Nishio Y et al (2018) Secular changes in clinical manifestations of kidney disease among Japanese adults with type 2 diabetes from 1996 to 2014. J Diabetes Investig. https://doi.org/10.1111/jdi.12977
Article
PubMed
Google Scholar
Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D et al (2014) Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med 370:1514–1523
CAS
PubMed
Google Scholar
Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003) Regression of microalbuminuria in type 1 diabetes. N Engl J Med 348:2285–2293
CAS
PubMed
Google Scholar
Giorgino F, Laviola L, Cavallo Perin P, Solnica B, Fuller J, Chaturvedi N (2004) Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia 47:1020–1028
CAS
PubMed
Google Scholar
Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I et al (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105
PubMed
PubMed Central
Google Scholar
Gaede P, Tarnow L, Vedel P, Parving HH, Pedersen O (2004) Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol Dial Transplant 19:2784–2788
PubMed
Google Scholar
Araki S, Haneda M, Sugimoto T, Isono M, Isshiki K, Kashiwagi A et al (2005) Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes mellitus. Diabetes 54:2983–2987
CAS
PubMed
Google Scholar
Yamada T, Komatsu M, Komiya I, Miyahara Y, Shima Y, Matsuzaki M et al (2005) Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care 28:2733–2738
PubMed
Google Scholar
Lane PH, Steffes MW, Mauer SM (1992) Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes 41:581–586
CAS
PubMed
Google Scholar
Tsalamandris C, Allen TJ, Gilbert RE, Sinha A, Panagiotopoulos S, Cooper ME et al (1994) Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 43:649–655
CAS
PubMed
Google Scholar
Kramer HJ, Nguyen QD, Curhan G, Hsu CY (2003) Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289:3273–3277
PubMed
Google Scholar
Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J et al (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24:302–308
CAS
PubMed
PubMed Central
Google Scholar
Bailey RA, Wang Y, Zhu V, Rupnow MF (2014) Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on kidney disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes. 7:415
PubMed
PubMed Central
Google Scholar
Mottl AK, Kwon KS, Mauer M, Mayer-Davis EJ, Hogan SL, Kshirsagar AV (2013) Normoalbuminuric diabetic kidney disease in the U.S. population. J Diabetes Complic 27:123–127
Google Scholar
MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G (2004) Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27:195–200
PubMed
Google Scholar
Dwyer JP, Parving HH, Hunsicker LG, Ravid M, Remuzzi G, Lewis JB (2012) Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: results from the DEMAND Study. Cardiorenal Med. 2:1–10
CAS
PubMed
Google Scholar
Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG, DEMAND Investigators (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 69:2057–2063
PubMed
Google Scholar
Yokoyama H, Sone H, Oishi M, Kawai K, Fukumoto Y, Kobayashi M et al (2009) Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant 24:1212–1219
CAS
PubMed
Google Scholar
Thomas MC, Weekes AJ, Broadley OJ, Cooper ME, Mathew TH (2006) The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med J Aust 185:140–144
PubMed
Google Scholar
Thomas MC, Macisaac RJ, Jerums G, Weekes A, Moran J, Shaw JE et al (2009) Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (National Evaluation of the Frequency of Renal Impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care 32:1497–1502
PubMed
PubMed Central
Google Scholar
Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G et al (2011) Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens 29:1802–1809
CAS
PubMed
Google Scholar
Afghahi H, Miftaraj M, Svensson AM, Hadimeri H, Gudbjörnsdottir S, Eliasson B et al (2013) Ongoing treatment with renin-angiotensin-aldosterone-blocking agents does not predict normoalbuminuric renal impairment in a general type 2 diabetes population. J Diabetes Complic 27:229–234
Google Scholar
Hill CJ, Cardwell CR, Patterson CC, Maxwell AP, Magee GM, Young RJ et al (2014) Chronic kidney disease and diabetes in the National Health Service: a cross-sectional survey of the U.K. national diabetes audit. Diabet Med. 31:448–454
CAS
PubMed
Google Scholar
De Cosmo S, Rossi MC, Pellegrini F, Lucisano G, Bacci S, Gentile S et al (2014) Kidney dysfunction and related cardiovascular risk factors among patients with type 2 diabetes. Nephrol Dial Transplant 29:657–662
PubMed
Google Scholar
Gao B, Wu S, Wang J, Yang C, Chen S, Hou J et al (2019) Clinical features and long-term outcomes of diabetic kidney disease—a prospective cohort study from China. J Diabetes Complic 33:39–45
Google Scholar
Rodriguez-Poncelas A, Garre-Olmo J, Franch-Nadal J, Diez-Espino J, Mundet-Tuduri X, Barrot-De la Puente J et al (2013) Prevalence of chronic kidney disease in patients with type 2 diabetes in Spain: PERCEDIME2 study. BMC Nephrol. 14:46
PubMed
PubMed Central
Google Scholar
Bramlage P, Lanzinger S, van Mark G, Hess E, Fahrner S, Heyer CHJ et al (2019) Patient and disease characteristics of type-2 diabetes patients with or without chronic kidney disease: an analysis of the German DPV and DIVE databases. Cardiovasc Diabetol. 18:33
PubMed
PubMed Central
Google Scholar
Lee HW, Jo AR, Yi DW, Kang YH, Son SM (2016) Prevalent rate of nonalbuminuric renal insufficiency and its association with cardiovascular disease event in Korean type 2 diabetes. Endocrinol Metab (Seoul). 31:577–585
PubMed
PubMed Central
Google Scholar
Koye DN, Magliano DJ, Reid CM, Jepson C, Feldman HI, Herman WH et al (2018) Risk of progression of nonalbuminuric CKD to end-stage kidney disease in people with diabetes: the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis 72:653–661
PubMed
Google Scholar
Drury PL, Ting R, Zannino D, Ehnholm C, Flack J, Whiting M et al (2011) Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54:32–43
CAS
PubMed
Google Scholar
Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M et al (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 20:1813–1821
PubMed
PubMed Central
Google Scholar
Tobe SW, Clase CM, Gao P, McQueen M, Grosshennig A, Wang X et al (2011) Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: results from the ONTARGET and TRANSCEND studies. Circulation 123:1098–1107
CAS
PubMed
Google Scholar
Bakris GL, Sarafidis PA, Weir MR, Dahlöf B, Pitt B, Jamerson K et al (2010) Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 375:1173–1181
CAS
PubMed
Google Scholar
Thorn LM, Gordin D, Harjutsalo V, Hägg S, Masar R, Saraheimo M et al (2015) The presence and consequence of nonalbuminuric chronic kidney disease in patients with type 1 diabetes. Diabetes Care 38:2128–2133
PubMed
Google Scholar
Penno G, Russo E, Garofolo M, Daniele G, Lucchesi D, Giusti L et al (2017) Evidence for two distinct phenotypes of chronic kidney disease in individuals with type 1 diabetes mellitus. Diabetologia 60:1102–1113
CAS
PubMed
Google Scholar
Pacilli A, Viazzi F, Fioretto P, Giorda C, Ceriello A, Genovese S et al (2017) Epidemiology of diabetic kidney disease in adult patients with type 1 diabetes in Italy: the AMD-Annals initiative. Diabetes Metab Res Rev 33(4):e2873
Google Scholar
Lamacchia O, Viazzi F, Fioretto P, Mirijello A, Giorda C, Ceriello A et al (2018) Normoalbuminuric kidney impairment in patients with T1DM: insights from annals initiative. Diabetol Metab Syndr 10:60
PubMed
PubMed Central
Google Scholar
Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, UKPDS Study Group (2006) Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55:1832–1839
CAS
PubMed
Google Scholar
Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, de Boer IH et al (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 33:1536–1543
CAS
PubMed
PubMed Central
Google Scholar
Krolewski AS (2015) Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care 38:954–962
CAS
PubMed
PubMed Central
Google Scholar
Krolewski AS, Skupien J, Rossing P, Warram JH (2017) Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. Kidney Int 91:1300–1311
PubMed
PubMed Central
Google Scholar
Skupien J, Warram J, Smiles A, Stanton RC, Krolewski AS (2016) Patterns of estimated glomerular filtration rate decline leading to end-stage renal disease in type 1 diabetes. Diabetes Care 39:2262–2269
CAS
PubMed
PubMed Central
Google Scholar
Weldegiorgis M, de Zeeuw D, Li L, Parving HH, Hou FF, Remuzzi G, Greene T et al (2018) Longitudinal estimated GFR trajectories in patients with and without type 2 diabetes and nephropathy. Am J Kidney Dis 71:91–101
PubMed
Google Scholar
Jiang G, Luk AOY, Tam CHT, Xie F, Carstensen B, Lau ESH et al (2019) Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with type 2 diabetes. Kidney Int 95:178–187
PubMed
Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150
Google Scholar
Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH et al (2014) Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 37:226–234
CAS
PubMed
Google Scholar
Perkins BA, Ficociello LH, Ostrander BE, Silva KH, Weinberg J, Warram JH et al (2007) Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol 18:1353–1361
CAS
PubMed
Google Scholar
Skupien J, Warram JH, Smiles AM, Niewczas MA, Gohda T, Pezzolesi MG et al (2012) The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end-stage renal disease. Kidney Int 82:589–597
CAS
PubMed
PubMed Central
Google Scholar
de Boer IH, Steffes MW (2007) Glomerular filtration rate and albuminuria: twin manifestations of nephropathy in diabetes. J Am Soc Nephrol 18:1036–1037
PubMed
Google Scholar
Hoefield RA, Kalra PA, Baker PG, Sousa I, Diggle PJ, Gibson MJ et al (2011) The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrol Dial Transplant 26:887–892
PubMed
Google Scholar
Babazono T, Nyumura I, Toya K, Hayashi T, Ohta M, Suzuki K et al (2009) Higher levels of urinary albumin excretion within the normal range predict faster decline in glomerular filtration rate in diabetic patients. Diabetes Care 32:1518–1520
CAS
PubMed
PubMed Central
Google Scholar
Kitai Y, Doi Y, Osaki K, Sugioka S, Koshikawa M, Sugawara A (2015) Nephrotic range proteinuria as a strong risk factor for rapid renal function decline during pre-dialysis phase in type 2 diabetic patients with severely impaired renal function. Clin Exp Nephrol 19:1037–1043
CAS
PubMed
Google Scholar
Minutolo R, Gabbai FB, Provenzano M, Chiodini P, Borrelli S, Garofalo C et al (2018) Cardiorenal prognosis by residual proteinuria level in diabetic chronic kidney disease: pooled analysis of four cohort studies. Nephrol Dial Transplant 33:1942–1949
CAS
PubMed
Google Scholar
Provenzano M, Chiodini P, Minutolo R, Zoccali C, Bellizzi V, Conte G et al (2018) Reclassification of chronic kidney disease patients for end-stage renal disease risk by proteinuria indexed to estimated glomerular filtration rate: multicentre prospective study in nephrology clinics. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy217
Article
PubMed
Google Scholar
Jerums G, Panagiotopoulos S, Premaratne E, Power DA, MacIsaac RJ (2008) Lowering of proteinuria in response to antihypertensive therapy predicts improved renal function in late but not in early diabetic nephropathy: a pooled analysis. Am J Nephrol 28:614–627
CAS
PubMed
Google Scholar
de Boer IH, Gao X, Cleary PA, Bebu I, Lachin JM, Molitch ME et al (2016) Albuminuria changes and cardiovascular and renal outcomes in type 1 diabetes: the DCCT/EDIC Study. Clin J Am Soc Nephrol 11:1969–1977
PubMed
PubMed Central
Google Scholar
Jun M, Ohkuma T, Zoungas S, Colagiuri S, Mancia G, Marre M et al (2018) Changes in albuminuria and the risk of major clinical outcomes in diabetes: results from ADVANCE-ON. Diabetes Care 41:163–170
CAS
PubMed
Google Scholar
de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S et al (2004) Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 65:2309–2320
PubMed
Google Scholar
Carrero JJ, Grams ME, Sang Y, Ärnlöv J, Gasparini A, Matsushita K et al (2017) Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int 91:244–251
CAS
PubMed
Google Scholar
Coresh J, Heerspink HJL, Sang Y, Matsushita K, Arnlov J, Astor BC et al (2019) Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 7:115–127
CAS
PubMed
PubMed Central
Google Scholar
Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL et al (2019) Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 7:128–139
CAS
PubMed
Google Scholar
Levey AS, Cattran D, Friedman A, Miller WG, Sedor J, Tuttle K et al (2009) Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 54:205–226
PubMed
Google Scholar
Gregg EW, Cheng YJ, Saydah S, Cowie C, Garfield S, Geiss L et al (2012) Trends in death rates among U.S. adults with and without diabetes between 1997 and 2006: findings from the National Health Interview Survey. Diabetes Care 35:1252–1257
PubMed
PubMed Central
Google Scholar
Kramer H, Boucher RE, Leehey D, Fried L, Wei G, Greene T et al (2018) Increasing mortality in adults with diabetes and low estimated glomerular filtration rate in the absence of albuminuria. Diabetes Care 41:775–781
PubMed
PubMed Central
Google Scholar
Liu JJ, Liu S, Gurung RL, Ang K, Tang WE, Sum CF et al (2018) Risk of progressive chronic kidney disease in individuals with early-onset type 2 diabetes: a prospective cohort study. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy211
Article
PubMed
PubMed Central
Google Scholar
Weir MR (2017) Acute changes in glomerular filtration rate with renin-angiotensin system (RAS) inhibition: clinical implications. Kidney Int 91:529–531
CAS
PubMed
Google Scholar
Xie X, Liu Y, Perkovic V, Li X, Ninomiya T, Hou W et al (2016) Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis 67:728–741
CAS
PubMed
Google Scholar
Tabaei BP, Al-Kassab AS, Ilag LL, Zawacki CM, Herman WH (2001) Does microalbuminuria predict diabetic nephropathy? Diabetes Care 24:1560–1566
CAS
PubMed
Google Scholar
Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 329:1456–1462
CAS
PubMed
Google Scholar
Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860
CAS
PubMed
Google Scholar
Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869
CAS
PubMed
Google Scholar
Afghahi H, Cederholm J, Eliasson B, Zethelius B, Gudbjörnsdottir S, Hadimeri H et al (2011) Risk factors for the development of albuminuria and renal impairment in type 2 diabetes—the Swedish National Diabetes Register (NDR). Nephrol Dial Transplant 26:1236–1243
PubMed
Google Scholar
Ficociello LH, Rosolowsky ET, Niewczas MA, Maselli NJ, Weinberg JM, Aschengrau A et al (2010) High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up. Diabetes Care 33:1337–1343
CAS
PubMed
PubMed Central
Google Scholar
Pilemann-Lyberg S, Hansen TW, Tofte N, Winther SA, Theilade S, Ahluwalia TS et al (2019) Uric acid is an independent risk factor for decline in kidney function, cardiovascular event and mortality in patients with type 1 diabetes. Diabetes Care 42:1088–1094
CAS
PubMed
Google Scholar
Zoppini G, Targher G, Chonchol M, Ortalda V, Abaterusso C, Pichiri I et al (2012) Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care 35:99–104
CAS
PubMed
Google Scholar
Kim WJ, Kim SS, Bae MJ, Yi YS, Jeon YK, Kim BH et al (2014) High-normal serum uric acid predicts the development of chronic kidney disease in patients with type 2 diabetes mellitus and preserved kidney function. J Diabetes Complic 28:130–134
Google Scholar
De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S et al (2015) Serum uric acid and risk of CKD in type 2 diabetes. Clin J Am Soc Nephrol 10:1921–1929
PubMed
PubMed Central
Google Scholar
Chang YH, Lei CC, Lin KC, Chang DM, Hsieh CH, Lee YJ (2016) Serum uric acid level as an indicator for CKD regression and progression in patients with type 2 diabetes mellitus—a 4.6-year cohort study. Diabetes Metab Res Rev 32:557–564
CAS
PubMed
Google Scholar
Gu L, Huang L, Wu H, Lou Q, Bian R (2017) Serum uric acid to creatinine ratio: a predictor of incident chronic kidney disease in type 2 diabetes mellitus patients with preserved kidney function. Diab Vasc Dis Res 14:221–225
CAS
PubMed
Google Scholar
Coca SG, Nadkarni GN, Huang Y, Moledina DG, Rao V, Zhang J et al (2017) Plasma biomarkers and kidney function decline in early and established diabetic kidney disease. J Am Soc Nephrol 28:2786–2793
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Yu Y, Li X, Li D, Xu C, Yuan J et al (2018) Serum uric acid levels and decreased estimated glomerular filtration rate in patients with type 2 diabetes: a cohort study and meta-analysis. Diabetes Metab Res Rev 34:e3046
PubMed
Google Scholar
Mwasongwe SE, Fülöp T, Katz R, Musani SK, Sims M, Correa A et al (2018) Relation of uric acid level to rapid kidney function decline and development of kidney disease: the Jackson Heart Study. J Clin Hypertens 20:775–783
CAS
Google Scholar
Hanai K, Tauchi E, Nishiwaki Y, Mori T, Yokoyama Y, Uchigata Y et al (2018) Effects of uric acid on kidney function decline differ depending on baseline kidney function in type 2 diabetic patients. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy138
Article
Google Scholar
Rosolowsky ET, Niewczas MA, Ficociello LH, Perkins BA, Warram JH, Krolewski AS (2008) Between hyperfiltration and impairment: demystifying early renal functional changes in diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1):S46–S53
CAS
PubMed
Google Scholar
Jalal DI, Chonchol M, Chen W, Targher G (2013) Uric acid as a target of therapy in CKD. Am J Kidney Dis 61:134–146
CAS
PubMed
Google Scholar
Afkarian M, Polsky S, Parsa A, Aronson R, Caramori ML, Cherney DZ et al (2019) Preventing Early Renal Loss in Diabetes (PERL) Study: a randomized double-blinded trial of allopurinol-rationale, design, and baseline data. Diabetes Care. https://doi.org/10.2337/dc19-0342
Article
PubMed
PubMed Central
Google Scholar
Niewczas MA, Ficociello LH, Johnson AC, Walker W, Rosolowsky ET, Roshan B (2009) Effects of uric acid on kidney function decline differ depending on baseline kidney function in type 2 diabetic patients. Serum concentrations of markers of TNFα and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 4:62–70
CAS
PubMed
PubMed Central
Google Scholar
Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F et al (2012) Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol 23:516–524
CAS
PubMed
PubMed Central
Google Scholar
Skupien J, Warram JH, Niewczas MA, Gohda T, Malecki M, Mychaleckyj JC et al (2014) Synergism between circulating tumor necrosis factor receptor 2 and HbA1c in determining renal decline during 5–18 years of follow-up in patients with type 1 diabetes and proteinuria. Diabetes Care 37:2601–2608
CAS
PubMed
PubMed Central
Google Scholar
Miyazawa I, Araki S, Obata T, Yoshizaki T, Morino K, Kadota A et al (2011) Association between serum soluble TNFα receptors and renal dysfunction in type 2 diabetic patients without proteinuria. Diab Res Clin Pract 92:174–180
CAS
Google Scholar
Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F et al (2012) Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol 23:507–515
CAS
PubMed
PubMed Central
Google Scholar
Pavkov ME, Nelson RG, Knowler WC, Cheng Y, Krolewski AS, Niewczas MA (2015) Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int 87:812–819
CAS
PubMed
Google Scholar
Doody A, Jackson S, Elliott JA, Canavan RJ, Godson C, Slattery D et al (2018) Validating the association between plasma tumour necrosis factor receptor 1 levels and the presence of renal injury and functional decline in patients with type 2 diabetes. J Diabetes Complic 32:95–99
Google Scholar
Kamei N, Yamashita M, Nishizaki Y, Yanagisawa N, Nojiri S, Tanaka K et al (2018) Association between circulating tumor necrosis factor-related biomarkers and estimated glomerular filtration rate in type 2 diabetes. Sci Rep 8:15302
PubMed
PubMed Central
Google Scholar
Chung HF, Long KZ, Hsu CC, Al Mamun A, Jhang HR, Shin SJ et al (2015) Association of n-3 polyunsaturated fatty acids and inflammatory indicators with renal function decline in type 2 diabetes. Clin Nutr 34:229–234
CAS
PubMed
Google Scholar
Klisic A, Kavaric N, Ninic A (2018) Retinol-binding protein 4 versus albuminuria as predictors of estimated glomerular filtration rate decline in patients with type 2 diabetes. J Res Med Sci. 23:44
PubMed
PubMed Central
Google Scholar
Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS et al (2016) Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: the ACCORD trial. Clin J Am Soc Nephrol 11:1343–1352
PubMed
PubMed Central
Google Scholar
Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH et al (2008) Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol 19:789–797
CAS
PubMed
PubMed Central
Google Scholar
Sabbisetti VS, Waikar SS, Antoine DJ, Smiles A, Wang C, Ravisankar A et al (2014) Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol 25:2177–2186
CAS
PubMed
PubMed Central
Google Scholar
Nielsen SE, Reinhard H, Zdunek D, Hess G, Gutiérrez OM, Wolf M et al (2012) Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients. Diabetes Res Clin Pract 97:71–76
CAS
PubMed
Google Scholar
Rotbain Curovic V, Hansen TW, Eickhoff MK, von Scholten BJ, Reinhard H, Jacobsen PK et al (2018) Urinary tubular biomarkers as predictors of kidney function decline, cardiovascular events and mortality in microalbuminuric type 2 diabetic patients. Acta Diabetol 55:1143–1150
CAS
PubMed
Google Scholar
Colombo M, Looker HC, Farran B, Hess S, Groop L, Palmer CNA et al (2019) Serum kidney injury molecule 1 and β2-microglobulin perform as well as larger biomarker panels for prediction of rapid decline in renal function in type 2 diabetes. Diabetologia 62:156–168
CAS
PubMed
Google Scholar
Araki S, Haneda M, Koya D, Sugaya T, Isshiki K, Kume S et al (2013) Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy. Diabetes Care 36:1248–1253
CAS
PubMed
PubMed Central
Google Scholar
Kim SS, Song SH, Kim IJ, Jeon YK, Kim BH, Kwak IS et al (2013) Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care 36:656–661
CAS
PubMed
PubMed Central
Google Scholar
Conway BR, Manoharan D, Manoharan D, Jenks S, Dear JW, McLachlan S et al (2012) Measuring urinary tubular biomarkers in type 2 diabetes does not add prognostic value beyond established risk factors. Kidney Int 82:812–818
CAS
PubMed
Google Scholar
Garlo KG, White WB, Bakris GL, Zannad F, Wilson CA, Kupfer S et al (2018) Kidney biomarkers and decline in eGFR in patients with type 2 diabetes. Clin J Am Soc Nephrol 13:398–405
CAS
PubMed
PubMed Central
Google Scholar
Kopf S, Oikonomou D, von Eynatten M, Kieser M, Zdunek D, Hess G et al (2014) Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta Diabetol 51:479–489
CAS
PubMed
Google Scholar
von Scholten BJ, Reinhard H, Hansen TW, Oellgaard J, Parving HH, Jacobsen PK et al (2016) Urinary biomarkers are associated with incident cardiovascular disease, all-cause mortality and deterioration of kidney function in type 2 diabetic patients with microalbuminuria. Diabetologia 59:1549–1557
Google Scholar
Morita M, Uchigata Y, Hanai K, Ogawa Y, Iwamoto Y (2011) Association of urinary type IV collagen with GFR decline in young patients with type 1 diabetes. Am J Kidney Dis 58:915–920
CAS
PubMed
Google Scholar
Araki S, Haneda M, Koya D, Isshiki K, Kume S, Sugimoto T et al (2010) Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care 33:1805–1810
CAS
PubMed
PubMed Central
Google Scholar
Bhensdadia NM, Hunt KJ, Lopes-Virella MF, Michael Tucker J, Mataria MR, Alge JL et al (2013) Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int 83:1136–1143
CAS
PubMed
PubMed Central
Google Scholar
Liu JJ, Liu S, Wong MD, Gurung RL, Lim SC (2016) Urinary haptoglobin predicts rapid renal function decline in asians with type 2 diabetes and early kidney disease. J Clin Endocrinol Metab 101:3794–3802
CAS
PubMed
Google Scholar
Boertien WE, Riphagen IJ, Drion I, Alkhalaf A, Bakker SJ, Groenier KH et al (2013) Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33). Diabetologia 56:1680–1688
CAS
PubMed
Google Scholar
Lee CH, Cheung CYY, Woo YC, Lui DTW, Yuen MMA, Fong CHY et al (2019) Prospective associations of circulating adipocyte fatty acid-binding protein levels with risks of renal outcomes and mortality in type 2 diabetes. Diabetologia 62:169–177
CAS
PubMed
Google Scholar
Lee CH, Hui EY, Woo YC, Yeung CY, Chow WS, Yuen MM et al (2015) Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria. J Clin Endocrinol Metab 100:1368–1375
CAS
PubMed
Google Scholar
Merchant ML, Niewczas MA, Ficociello LH, Lukenbill JA, Wilkey DW, Li M et al (2013) Plasma kininogen and kininogen fragments are biomarkers of progressive renal decline in type 1 diabetes. Kidney Int 83:1177–1184
CAS
PubMed
PubMed Central
Google Scholar
Liu JJ, Pek SLT, Ang K, Tavintharan S, Lim SC, SMART2D Study (2017) Plasma leucine-rich α-2-glycoprotein 1 predicts rapid eGFR decline and albuminuria progression in type 2 diabetes mellitus. J Clin Endocrinol Metab 102:3683–3691
PubMed
Google Scholar
Fountoulakis N, Maltese G, Gnudi L, Karalliedde J (2018) Reduced levels of anti-ageing hormone klotho predict renal function decline in type 2 diabetes. J Clin Endocrinol Metab 103:2026–2032
PubMed
Google Scholar
Hanai K, Babazono T, Mugishima M, Yoshida N, Nyumura I, Toya K et al (2011) Association of serum leptin levels with progression of diabetic kidney disease in patients with type 2 diabetes. Diabetes Care 34:2557–2559
PubMed
PubMed Central
Google Scholar
Pontillo C, Zhang ZY, Schanstra JP, Jacobs L, Zürbig P, Thijs L et al (2017) Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int Rep. 2:1066–1075
PubMed
PubMed Central
Google Scholar
Zürbig P, Mischak H, Menne J, Haller H (2019) CKD273 enables efficient prediction of diabetic nephropathy in nonalbuminuric patients. Diabetes Care 42:e4–e5
PubMed
Google Scholar
Lindhardt M, Persson F, Zürbig P, Stalmach A, Mischak H, de Zeeuw D et al (2017) Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transplant 32:1866–1873
CAS
PubMed
Google Scholar
Pena MJ, Heinzel A, Heinze G, Alkhalaf A, Bakker SJ, Nguyen TQ et al (2015) A panel of novel biomarkers representing different disease pathways improves prediction of renal function decline in type 2 diabetes. PLoS One 10:e0120995
PubMed
PubMed Central
Google Scholar
Looker HC, Colombo M, Hess S, Brosnan MJ, Farran B, Dalton RN et al (2015) Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int 88:888–896
CAS
PubMed
Google Scholar
Saulnier PJ, Gand E, Velho G, Mohammedi K, Zaoui P, Fraty M et al (2017) Association of circulating biomarkers (adrenomedullin, TNFR1, and NT-proBNP) with renal function decline in patients with type 2 diabetes: a French prospective cohort. Diabetes Care 40:367–374
CAS
PubMed
Google Scholar
Peters KE, Davis WA, Ito J, Winfield K, Stoll T, Bringans SD et al (2017) Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: the Fremantle Diabetes Study Phase II. Diabetes Care 40:1548–1555
CAS
PubMed
Google Scholar
Nowak N, Skupien J, Smiles AM, Yamanouchi M, Niewczas MA, Galecki AT et al (2018) Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int 93:1198–1206
CAS
PubMed
PubMed Central
Google Scholar
Heinzel A, Kammer M, Mayer G, Reindl-Schwaighofer R, Hu K, Perco P et al (2018) Validation of plasma biomarker candidates for the prediction of eGFR decline in patients with type 2 diabetes. Diabetes Care 41:1947–1954
CAS
PubMed
PubMed Central
Google Scholar
Jenks SJ, Conway BR, McLachlan S, Teoh WL, Williamson RM, Webb DJ et al (2017) Cardiovascular disease biomarkers are associated with declining renal function in type 2 diabetes. Diabetologia 60:1400–1408
CAS
PubMed
PubMed Central
Google Scholar
Chen SC, Lin TH, Hsu PC, Chang JM, Lee CS, Tsai WC et al (2011) Impaired left ventricular systolic function and increased brachial-ankle pulse-wave velocity are independently associated with rapid renal function progression. Hypertens Res 34:1052–1058
PubMed
Google Scholar
Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539
PubMed
Google Scholar
Bouchi R, Babazono T, Mugishima M, Yoshida N, Nyumura I, Toya K et al (2011) Arterial stiffness is associated with incident albuminuria and decreased glomerular filtration rate in type 2 diabetic patients. Diabetes Care 34:2570–2575
CAS
PubMed
PubMed Central
Google Scholar
Fountoulakis N, Thakrar C, Patel K, Viberti G, Gnudi L, Karalliedde J (2017) Increased arterial stiffness is an independent predictor of renal function decline in patients with type 2 diabetes mellitus younger than 60 years. J Am Heart Assoc 6:e004934
PubMed
PubMed Central
Google Scholar
O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46:200–204
PubMed
Google Scholar
Zoppini G, Targher G, Chonchol M, Ortalda V, Negri C, Stoico V et al (2012) Predictors of estimated GFR decline in patients with type 2 diabetes and preserved kidney function. Clin J Am Soc Nephrol 7:401–408
CAS
PubMed
Google Scholar
Mantovani A, Zaza G, Byrne CD, Lonardo A, Zoppini G, Bonora E et al (2018) Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism 79:64–76
CAS
PubMed
Google Scholar
Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH et al (2017) Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28:1023–1039
CAS
PubMed
PubMed Central
Google Scholar
Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ et al (2015) Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with type 1 diabetes. Nephrol Dial Transplant 30:1706–1711
PubMed
PubMed Central
Google Scholar
Moriya T, Tanaka S, Sone H, Ishibashi S, Matsunaga S, Ohashi Y et al (2017) Patients with type 2 diabetes having higher glomerular filtration rate showed rapid renal function decline followed by impaired glomerular filtration rate: Japan Diabetes Complications study. J Diabetes Complic 31:473–478
Google Scholar
Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G et al (2013) HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care 36:2301–2310
CAS
PubMed
PubMed Central
Google Scholar
Porrini E, Ruggenenti P, Mogensen CE, Barlovic DP, Praga M, Cruzado JM et al (2015) Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol 3:382–391
CAS
PubMed
Google Scholar
Mise K, Hoshino J, Ueno T, Hazue R, Hasegawa J, Sekine A et al (2016) Prognostic value of tubulointerstitial lesions, urinary n-acetyl-β-d-glucosaminidase, and urinary β2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. Clin J Am Soc Nephrol 11:593–601
CAS
PubMed
PubMed Central
Google Scholar
Hwang S, Park J, Kim J, Jang HR, Kwon GY, Huh W et al (2017) Tissue expression of tubular injury markers is associated with renal function decline in diabetic nephropathy. J Diabetes Complic 31:1704–1709
Google Scholar
Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448
PubMed
Google Scholar
Kelly KJ, Dominguez JH (2010) Rapid progression of diabetic nephropathy is linked to inflammation and episodes of acute renal failure. Am J Nephrol 32:469–475
CAS
PubMed
Google Scholar
Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82:516–524
PubMed
Google Scholar
Fiorentino M, Bolignano D, Tesar V, Pisano A, Biesen WV, Tripepi G et al (2017) Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol Dial Transplant 32:97–110
CAS
PubMed
Google Scholar
Gesualdo L, Di Paolo S (2015) Renal lesions in patients with type 2 diabetes: a puzzle waiting to be solved. Nephrol Dial Transplant 30:155–157
CAS
PubMed
Google Scholar
Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY et al (2013) Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 36:3620–3626
CAS
PubMed
PubMed Central
Google Scholar
Shimizu M, Furuichi K, Toyama T, Kitajima S, Hara A, Kitagawa K et al (2013) Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care 36:3655–3662
CAS
PubMed
PubMed Central
Google Scholar
Fioretto P, Mauer M, Brocco E, Velussi M, Frigato F, Muollo B et al (1996) Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 39:1569–1576
CAS
PubMed
Google Scholar
Yagil C, Barak A, Ben-Dor D, Rosenmann E, Bernheim J, Rosner M et al (2005) Nonproteinuric diabetes-associated nephropathy in the Cohen rat model of type 2 diabetes. Diabetes 54:1487–1496
CAS
PubMed
Google Scholar
Osterby R (1992) Glomerular structural changes in type 1 (insulin-dependent) diabetes mellitus: causes, consequences, and prevention. Diabetologia 35:803–812
CAS
PubMed
Google Scholar
Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52:1036–1040
CAS
PubMed
Google Scholar
Pugliese G, Solini A, Fondelli C, Trevisan R, Vedovato M, Nicolucci A et al (2011) Reproducibility of albuminuria in type 2 diabetic subjects. Findings from the Renal Insufficiency And Cardiovascular Events (RIACE) study. Nephrol Dial Transplant 26:3950–3954
CAS
PubMed
Google Scholar
Krolewski AS, Warram JH, Forsblom C, Smiles AM, Thorn L, Skupien J et al (2012) Serum concentration of cystatin C and risk of end-stage renal disease in diabetes. Diabetes Care 35:2311–2316
CAS
PubMed
PubMed Central
Google Scholar
Pan Y, Jiang S, Qiu D, Shi J, Zhou M, An Y et al (2016) Comparing the GFR estimation equations using both creatinine and cystatin c to predict the long-term renal outcome in type 2 diabetic nephropathy patients. J Diabetes Complic 30:1478–1487
Google Scholar
Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF et al (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382:339–352
PubMed
Google Scholar
Orchard TJ, Secrest AM, Miller RG, Costacou T (2010) In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 53:2312–2319
CAS
PubMed
PubMed Central
Google Scholar
Lind M, Svensson AM, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H et al (2014) Glycemic control and excess mortality in type 1 diabetes. N Engl J Med 371:1972–1982
PubMed
Google Scholar
Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjörnsdottir S et al (2015) Excess mortality among persons with type 2 diabetes. N Engl J Med 373:1720–1732
CAS
PubMed
Google Scholar
Penno G, Solini A, Bonora E, Orsi E, Fondelli C, Zerbini G et al (2018) Defining the contribution of chronic kidney disease to all-cause mortality in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study. Acta Diabetol 55:603–612
CAS
PubMed
Google Scholar
Astor BC, Hallan SI, Miller ER 3rd, Yeung E, Coresh J (2008) Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol 167:1226–1234
PubMed
Google Scholar
Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081
Google Scholar
Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ et al (2012) Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380:1662–1673
PubMed
PubMed Central
Google Scholar
Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS et al (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 79:1331–1340
CAS
PubMed
Google Scholar
Groop PH, Thomas MC, Moran JL, Wadèn J, Thorn LM, Mäkinen VP et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658
CAS
PubMed
PubMed Central
Google Scholar
Bruno G, Merletti F, Bargero G, Novelli G, Melis D, Soddu A et al (2007) Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia 50:941–948
CAS
PubMed
Google Scholar
de Boer IH, Katz R, Cao JJ, Fried LF, Kestenbaum B, Mukamal K et al (2009) Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care 32:1833–1838
PubMed
PubMed Central
Google Scholar
Penno G, Solini A, Orsi E, Bonora E, Fondelli C, Trevisan R et al (2018) Non-albuminuric renal impairment is a strong predictor of mortality in individuals with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicentre study. Diabetologia 61:2277–2289
CAS
PubMed
Google Scholar
Garofolo M, Russo E, Miccoli R, Lucchesi D, Giusti L, Sancho-Bornez V et al (2018) Albumimuric and non-albuminuric chronic kidney disease in type 1 diabetes; association with major vascular outcomes risk and all-cause mortality. J Diabetes Complic 32:550–557
Google Scholar
Solini S, Penno G, Bonora E, Fondelli C, Orsi E, Arosio M et al (2012) Diverging association of reduced glomerular filtration rate and albuminuria with coronary and noncoronary events in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre study. Diabetes Care 35:143–149
CAS
PubMed
Google Scholar
Rigalleau V, Lasseur C, Raffaitin C, Beauvieux MC, Barthe N, Chauveau P et al (2007) Normoalbuminuric renal-insufficient diabetic patients: a lower-risk group. Diabetes Care 30:2034–2039
CAS
PubMed
Google Scholar
Abuelo JG (2007) Normotensive ischemic acute renal failure. N Engl J Med 357:797–805
CAS
PubMed
Google Scholar
Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J et al (2004) Angiotensin-receptor blockade versus converting enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med 351:1952–1961
CAS
PubMed
Google Scholar
Wu HY, Peng CL, Chen PC, Chiang CK, Chang CJ, Huang JW et al (2017) Comparative effectiveness of angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers for major renal outcomes in patients with diabetes: a 15-year cohort study. PLoS One 12:e0177654
PubMed
PubMed Central
Google Scholar
Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICROHOPE substudy. Lancet 355:253–259
Google Scholar
Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878
CAS
PubMed
Google Scholar
Lohr JW, Willsky GR, Acara MA (1998) Renal drug metabolism. Pharmacol Rev 50:107–141
CAS
PubMed
Google Scholar
Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL et al (2009) Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol 4:1121–1127
CAS
PubMed
PubMed Central
Google Scholar
Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24:382–391
CAS
PubMed
Google Scholar
Woerle HJ, Meyer C, Popa EM, Cryer PE, Gerich JE (2003) Renal compensation for impaired hepatic glucose release during hypoglycemia in type 2 diabetes: further evidence for hepatorenal reciprocity. Diabetes 52:1386–1392
CAS
PubMed
Google Scholar
Garber AJ, Bier DM, Cryer PE, Pagliara AS (1974) Hypoglycemia in compensated chronic renal insufficiency: substrate limitation of gluconeogenesis. Diabetes 23:982–986
CAS
PubMed
Google Scholar
Ishida JH, Johansen KL (2016) Exclusion of patients with kidney disease from cardiovascular trials. JAMA Intern Med 176:124–125
PubMed
PubMed Central
Google Scholar
Bailie GR, Eisele G, Liu L, Roys E, Kiser M, Finkelstein F et al (2005) Patterns of medication use in the RRI-CKD study: focus on medications with cardiovascular effects. Nephrol Dial Transplant 20:1110–1115
CAS
PubMed
Google Scholar
Tonelli M, Wiebe N, Guthrie B, James MT, Quan H, Fortin M et al (2015) Comorbidity as a driver of adverse outcomes in people with chronic kidney disease. Kidney Int 88:859–866
PubMed
Google Scholar
White JR (2014) A brief history of the development of diabetes medications. Diabetes Spectr 27:82–86
PubMed
PubMed Central
Google Scholar
Neumiller JJ, Alicic RZ, Tuttle KR (2017) Therapeutic considerations for antihyperglycemic agents in diabetic kidney disease. J Am Soc Nephrol 28:2263–2274
CAS
PubMed
PubMed Central
Google Scholar
Cherney DZI, Bakris GL (2018) Novel therapies for diabetic kidney disease. Kidney Int Suppl 8:18–25
Google Scholar
Solini A, Penno G, Bonora E, Fondelli C, Orsi E, Trevisan R et al (2013) Age, renal dysfunction, cardiovascular disease, and antihyperglycemic treatment in type 2 diabetes mellitus: findings from the Renal Insufficiency and Cardiovascular Events Italian Multicenter study. J Am Geriatr Soc 61:1253–1261
PubMed
Google Scholar
Salpeter S, Greyber E, Pasternak G, Salpeter E (2003) Risk of fatal and non-fatal lactic acidosis with metformin in type 2 diabetes. Arch Intern Med 163:2594–2602
PubMed
Google Scholar
Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19:608–624
CAS
PubMed
Google Scholar
de Boer IH, Zelnick L, Afkarian M, Ayers E, Curtin L, Himmelfarb J et al (2016) Impaired glucose and insulin homeostasis in moderate-severe CKD. J Am Soc Nephrol 27:2861–2871
PubMed
PubMed Central
Google Scholar
Seino S, Sugawara K, Yokoi N, Takahashi H (2017) β-Cell signalling and insulin secretagogues: a path for improved diabetes therapy. Diabetes Obes Metab 19(Suppl 1):22–29
CAS
PubMed
Google Scholar
Arnouts P, Bolignano D, Nistor I, Bilo H, Gnudi L, Heaf J et al (2014) Glucose-lowering drugs in patients with chronic kidney disease: a narrative review on pharmacokinetic properties. Nephrol Dial Transplant 29:1284–1300
CAS
PubMed
Google Scholar
Feldman JM (1985) Glyburide: a second-generation sulfonylurea hypoglycemic agent. History, chemistry, metabolism, pharmacokinetics, clinical use and adverse effects. Pharmacotherapy 5:43–62
CAS
PubMed
Google Scholar
Rosenkranz B, Profozic V, Metelko Z, Mrzljak V, Lange C, Malerczyk V (1996) Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia 39:1617–1624
CAS
PubMed
Google Scholar
Balant L, Zahnd G, Gorgia A, Schwarz R, Fabre J (1973) Pharmacokinetics of glipizide in man: influence of renal insufficiency. Diabetologia 9(Suppl.):331–338
CAS
Google Scholar
Palmer KJ, Brogden RN (1993) Gliclazide. An update of its pharmacological properties and therapeutic efficacy in non-insulin-dependent diabetes mellitus. Drugs 46:92–125
CAS
PubMed
Google Scholar
Marbury TC, Ruckle JL, Hatorp V, Andersen MP, Nielsen KK, Huang WC et al (2000) Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther 67:7–15
CAS
PubMed
Google Scholar
Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585
CAS
PubMed
PubMed Central
Google Scholar
Buse JB, DeFronzo RA, Rosenstock J, Kim T, Burns C, Skare S et al (2016) The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39:198–205
CAS
PubMed
Google Scholar
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK et al (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50:81–98
CAS
PubMed
Google Scholar
Lipska KJ, Bailey CJ, Inzucchi SE (2011) Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care 34:1431–1437
CAS
PubMed
PubMed Central
Google Scholar
DeFronzo R, Fleming GA, Chen K, Bicsak TA (2016) Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism 65:20–29
CAS
PubMed
Google Scholar
Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118
PubMed
Google Scholar
Budde K, Neumayer HH, Fritsche L, Sulowicz W, Stompôr T, Eckland D (2003) The pharmacokinetics of pioglitazone in patients with impaired renal function. Br J Clin Pharmacol 55:368–374
CAS
PubMed
PubMed Central
Google Scholar
Joubert PH, Venter HL, Foukaridis GN (1990) The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism? Br J Clin Pharmacol 30:391–396
CAS
PubMed
PubMed Central
Google Scholar
Ahr HJ, Boberg M, Krause HP, Maul W, Müller FO, Ploschke HJ et al (1989) Pharmacokinetics of acarbose. Part I: absorption, concentration in plasma, metabolism and excretion after single administration of [14C]acarbose to rats, dogs and man. Arzneimittelforschung 39:1254–1260
CAS
PubMed
Google Scholar
Ahr HJ, Krause HP, Siefert HM, Steinke W, Weber H (1989) Pharmacokinetics of acarbose. Part II: Distribution to and elimination from tissues and organs following single or repeated administration of [14C]acarbose to rats and dogs. Arzneimittelforschung 39:1261–1267
CAS
PubMed
Google Scholar
Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705
CAS
PubMed
Google Scholar
Madsbad S (2009) Treatment of type 2 diabetes with incretin-based therapies. Lancet 373:438–439
PubMed
Google Scholar
Scheen AJ (2010) Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab 12:648–658
CAS
PubMed
Google Scholar
Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G et al (2018) Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61:2461–2498
PubMed
Google Scholar
Jespersen MJ, Knop FK, Christensen M (2013) GLP-1 agonists for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol 9:17–29
CAS
PubMed
Google Scholar
Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742
CAS
PubMed
Google Scholar
Thomas MC, Cherney DZI (2018) The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61:2098–2107
CAS
PubMed
Google Scholar
Lupsa BC, Inzucchi SE (2018) Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia 61:2118–2125
CAS
PubMed
Google Scholar
Kelly MS, Lewis J, Huntsberry AM, Dea L, Portillo I (2019) Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med 131:31–42
PubMed
Google Scholar
Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI (2018) Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 94:26–39
CAS
PubMed
Google Scholar
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 80:2295–2306
Google Scholar