Skip to main content

Advertisement

Log in

A practical approach for anabolic treatment of bone fragility with romosozumab

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Romosozumab, a fully humanized anti-sclerostin-antibody, is a bone-builder stimulating osteoblasts and inhibiting osteoclast by activation of the canonical Wnt-beta catenin signaling. This unique mechanism of action has the potential to address unmet needs in osteoporosis management.

Methods

The multifaceted practical clinical issues related to romosozumab are discussed, especially focusing on the rationale of employing a sclerostin inhibitor to target bone fragility as first line or second line treatment in post-menopausal osteoporosis and in males at increased risk of fractures.

Results

Four randomized clinical trials with several post-hoc analyses and more than ten observational studies have consistently demonstrated that romosozumab is effective in rapidly increasing bone mineral density (BMD) and decreasing risk of vertebral, non-vertebral and hip fractures in post-menopausal women at very-high risk of fractures. In male osteoporosis, only data on BMD are available. Noteworthy, romosozumab was shown to be more effective and rapid than teriparatide in improving BMD, bone structure and strength at the hip, especially in women already treated with anti-resorptive drugs. Interestingly, even if romosozumab displays best results in treatment-naïve patients, its favourable effects on BMD were observed even in women previously treated with teriparatide or denosumab, although to a lesser extent.

Conclusions

Based on the available evidence, romosozumab could be proposed as ideal drug in several clinical settings, such as non-fractured post-menopausal women at very-high risk of fractures, patients with recent hip fracture, patients non responder to bisphosphonates and short-term denosumab therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reid IR, Billington EO (2022) Drug therapy for osteoporosis in older adults. Lancet 399(10329):1080–1092

    Article  CAS  PubMed  Google Scholar 

  2. Cummings SR, Cosman F, Lewiecki EM, Schousboe JT, Bauer DC, Black DM et al (2017) Goal-directed treatment for osteoporosis: A progress report from the ASBMR-NOF working group on goal-directed treatment for osteoporosis. J Bone Miner Res 32(1):3–10

    Article  CAS  PubMed  Google Scholar 

  3. Marini F, Giusti F, Palmini G, Brandi ML (2023) Role of wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 34(2):213–238

    Article  CAS  PubMed  Google Scholar 

  4. Tabacco G, Bilezikian JP (2019) Osteoanabolic and dual action drugs. Br J Clin Pharmacol 85(6):1084–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

    Article  CAS  PubMed  Google Scholar 

  6. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427

    Article  CAS  PubMed  Google Scholar 

  7. Compston JE, Drake MT (2020) Defining very high fracture risk: Is FRAX fit for purpose? J Bone Miner Res 35(8):1399–1403

    Article  PubMed  Google Scholar 

  8. Schini M, Johansson H, Harvey NC, Lorentzon M, Kanis JA, McCloskey EV (2024) An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J Endocrinol Invest 47(3):501–511

    Article  CAS  PubMed  Google Scholar 

  9. Kobayakawa T, Suzuki T, Nakano M, Saito M, Miyazaki A, Takahashi J et al (2021) Real-world effects and adverse events of romosozumab in Japanese osteoporotic patients: A prospective cohort study. Bone Rep 14:101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miyauchi A, Hamaya E, Shimauchi J, Yoshinaga Y, Nishi K (2024) Effectiveness of romosozumab in patients with osteoporosis at high fracture risk: A Japanese real-world study. J Bone Miner Metab 42(1):77–89

    Article  CAS  PubMed  Google Scholar 

  11. Inose H, Ariga A, Motoyoshi T, Fukushima K, Tomizawa S, Kato T et al (2022) The real-world effect of 12 months of romosozumab treatment on patients with osteoporosis with a high risk of fracture and factors predicting the rate of bone mass increase: A multicenter retrospective study. JBMR Plus 6(7):e10637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cosman F, Crittenden DB, Ferrari S, Khan A, Lane NE, Lippuner K et al (2018) FRAME study: The foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33(7):1219–1226

    Article  CAS  PubMed  Google Scholar 

  13. Cosman F, Libanati C, Deignan C, Yu Z, Wang Z, Ferrari S et al (2021) Romosozumab followed by antiresorptive treatment increases the probability of achieving bone mineral density treatment goals. JBMR Plus 5(11):e10546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsourdi E, Zillikens MC, Meier C, Body JJ, Gonzalez Rodriguez E, Anastasilakis AD et al (2020) Fracture risk and management of discontinuation of denosumab therapy: A systematic review and position statement by ECTS. J Clin Endocrinol Metab 106:264–281

    Article  Google Scholar 

  15. McClung MR, Bolognese MA, Brown JP, Reginster JY, Langdahl BL, Maddox J et al (2020) A single dose of zoledronate preserves bone mineral density for up to 2 years after a second course of romosozumab. Osteoporos Int 31(11):2231–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oue T, Shimizu T, Asano T, Shimodan S, Ishizu H, Arita K et al (2023) Comparison of the efficacy of zoledronate acid or denosumab after switching from romosozumab in japanese postmenopausal patients. Calcif Tissue Int 112(6):683–690

    Article  CAS  PubMed  Google Scholar 

  17. Lewiecki EM, Betah D, Humbert L, Libanati C, Oates M, Shi Y et al (2024) 3D-modeling from hip DXA shows improved bone structure with romosozumab followed by denosumab or alendronate. J Bone Miner Res 39:473–483

    Article  PubMed  Google Scholar 

  18. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370(5):412–420

    Article  CAS  PubMed  Google Scholar 

  19. Genant HK, Engelke K, Bolognese MA, Mautalen C, Brown JP, Recknor C et al (2017) Effects of romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J Bone Miner Res 32(1):181–187

    Article  CAS  PubMed  Google Scholar 

  20. Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B et al (2017) Greater gains in spine and hip strength for romosozumab compared with teriparatide in postmenopausal women with low bone mass. J Bone Miner Res 32(9):1956–1962

    Article  CAS  PubMed  Google Scholar 

  21. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM et al (2018) Remodeling and modeling-based bone formation with teriparatide versus denosumab: A longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res 33(2):298–306

    Article  CAS  PubMed  Google Scholar 

  22. Chavassieux P, Chapurlat R, Portero-Muzy N, Roux JP, Garcia P, Brown JP et al (2019) Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: Bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res 34(9):1597–1608

    Article  CAS  PubMed  Google Scholar 

  23. Eriksen EF, Chapurlat R, Boyce RW, Shi Y, Brown JP, Horlait S et al (2022) Modeling-based bone formation after 2 months of romosozumab treatment: Results from the FRAME clinical trial. J Bone Miner Res 37(1):36–40

    Article  CAS  PubMed  Google Scholar 

  24. Cosman F, Lewiecki EM, Ebeling PR, Hesse E, Napoli N, Matsumoto T et al (2020) T-score as an indicator of fracture risk during treatment with romosozumab or alendronate in the ARCH trial. J Bone Miner Res 35(7):1333–1342

    Article  CAS  PubMed  Google Scholar 

  25. Geusens P, Feldman R, Oates M, Thomas T, Makras P, Jakob F et al (2022) Romosozumab reduces incidence of new vertebral fractures across severity grades among postmenopausal women with osteoporosis. Bone 154:116209

    Article  CAS  PubMed  Google Scholar 

  26. McClung MR, Betah D, Deignan C, Shi Y, Timoshanko J, Cosman F (2023) Romosozumab efficacy in postmenopausal women with no prior fracture who fulfill criteria for very high fracture risk. Endocr Pract 29:716–722

    Article  PubMed  Google Scholar 

  27. Geusens P, Oates M, Miyauchi A, Adachi JD, Lazaretti-Castro M, Ebeling PR et al (2019) The effect of 1 year of romosozumab on the incidence of clinical vertebral fractures in postmenopausal women with osteoporosis: Results from the FRAME study. JBMR Plus 3(10):e10211

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lane J, Langdahl B, Stone M, Kurth A, Oates M, Timoshanko J et al (2024) Romosozumab in patients who experienced an on-study fracture: Post hoc analyses of the FRAME and ARCH phase 3 trials. Osteoporos Int. https://doi.org/10.1007/s00198-024-07049-w

    Article  PubMed  Google Scholar 

  29. Schemitsch EH, Miclau T, Karachalios T, Nowak LL, Sancheti P, Poolman RW et al (2020) A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. JBJS 102(8):693–702

    Article  Google Scholar 

  30. Iconaru L, Charles A, Baleanu F, Surquin M, Benoit F, Mugisha A et al (2022) Prediction of an imminent fracture after an index fracture-models derived from the frisbee cohort. J Bone Miner Res 37(1):59–67

    Article  CAS  PubMed  Google Scholar 

  31. Kanis JA, Harvey NC, Johansson H, Liu E, Vandenput L, Lorentzon M et al (2020) A decade of FRAX: How has it changed the management of osteoporosis? Aging Clin Exp Res 32(2):187–196

    Article  PubMed  Google Scholar 

  32. Porcu G, Biffi A, Ronco R, Adami G, Alvaro R, Bogini R et al (2024) Refracture following vertebral fragility fracture when bone fragility is not recognized: Summarizing findings from comparator arms of randomized clinical trials. J Endocrinol Invest 47(4):795–818

    Article  CAS  PubMed  Google Scholar 

  33. Gielen E, Aldvén M, Kanis JA, Borgström F, Senior E, Willems D (2024) Cost-effectiveness of romosozumab for the treatment of postmenopausal women with osteoporosis at high risk of fracture in Belgium. Osteoporos Int. https://doi.org/10.1007/s00198-024-07043-2

    Article  PubMed  Google Scholar 

  34. Cosman F, Crittenden DB, Ferrari S, Lewiecki EM, Jaller-Raad J, Zerbini C et al (2018) Romosozumab FRAME study: A post hoc analysis of the role of regional background fracture risk on nonvertebral fracture outcome. J Bone Miner Res 33(8):1407–1416

    Article  CAS  PubMed  Google Scholar 

  35. Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R (2020) Pharmacological management of osteoporosis in postmenopausal women: An endocrine society guideline update. J Clin Endocrinol Metab 105(3):587–594

    Article  Google Scholar 

  36. Watts NB, Camacho PM, Lewiecki EM, Petak SM (2021) American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract 27(4):379–380

    Article  PubMed  Google Scholar 

  37. Adami G, Rossini M, Fassio A, Viapiana O, Gatti D, Comments on Kanis et al (2020) Algorithm for the management of patients at low, high, and very high risk of osteoporotic fractures. Osteoporos Int 31(5):1015

    Article  CAS  PubMed  Google Scholar 

  38. Adami G, Biffi A, Porcu G, Ronco R, Alvaro R, Bogini R et al (2023) A systematic review on the performance of fracture risk assessment tools: FRAX, DeFRA FRA-HS. J Endocrinol Invest 46(11):2287–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Curtis EMRJ, Al-Daghri N, Biver E, Brandi ML, Cavalier E, Hadji P, Halbout P, Harvey NC, Hiligsmann M, Javaid MK, Kanis JA, Kaufman JM, Lamy O, Matijevic R, Perez AD, Radermecker RP, Rosa MM, Thomas T, Thomasius F, Vlaskovska M, Rizzoli R, Cooper C (2022) Management of patients at very high risk of osteoporotic fractures through sequential treatments. Aging Clin Exp Res 34:695–714

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bouxsein ML, Eastell R, Lui LY, Wu LA, de Papp AE, Grauer A et al (2019) Change in bone density and reduction in fracture risk: A meta-regression of published trials. J Bone Miner Res 34(4):632–642

    Article  PubMed  Google Scholar 

  41. Diez-Perez A, Adachi JD, Agnusdei D, Bilezikian JP, Compston JE, Cummings SR et al (2012) Treatment failure in osteoporosis. Osteoporos Int 23(12):2769–2774

    Article  CAS  PubMed  Google Scholar 

  42. Cosman FNJ, Dempster DW (2016) Treatment sequence matters: Anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 32(2):198–202

    Article  Google Scholar 

  43. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM et al (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-switch study): Extension of a randomised controlled trial. Lancet 386(9999):1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai JJL, Lee H, Hans D, Leder BZ (2017) Effects of teriparatide, denosumab, or both on spine trabecular microarchitecture in DATA switch: A randomized controlled trial. J Clin Densitom 20(4):507–512

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tsai JNNK, Lin D, Yuan A, Lee H, Bouxsein ML, Leder BZ (2017) Effects of denosumab and teriparatide transitions on bone microarchitecture and estimated strength: The DATA-switch HR-pQCT study. J Bone Miner Res 32(10):2001–2009

    Article  CAS  PubMed  Google Scholar 

  46. Cosman F, Kendler DL, Langdahl BL, Leder BZ, Lewiecki EM, Miyauchi A et al (2022) Romosozumab and antiresorptive treatment: The importance of treatment sequence. Osteoporos Int 33(6):1243–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP, Daizadeh NS et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: A randomised, open-label, phase 3 trial. Lancet 390(10102):1585–1594

    Article  CAS  PubMed  Google Scholar 

  48. Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V et al (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): A multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391(10117):230–240

    Article  CAS  PubMed  Google Scholar 

  49. Ebina K, Hirao M, Tsuboi H, Nagayama Y, Kashii M, Kaneshiro S et al (2020) Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone 140:115574

    Article  CAS  PubMed  Google Scholar 

  50. Ebina K, Tsuboi H, Nagayama Y, Kashii M, Kaneshiro S, Miyama A et al (2021) Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis. Joint Bone Spine 88(5):105219

    Article  CAS  PubMed  Google Scholar 

  51. Langdahl B, Ferrari S, Dempster DW (2016) Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis 8(6):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hong N, Shin S, Lee S, Rhee Y (2023) Romosozumab is associated with greater trabecular bone score improvement compared to denosumab in postmenopausal osteoporosis. Osteoporos Int 34(12):2059–2067

    Article  CAS  PubMed  Google Scholar 

  53. Kocjan T, Rajic AS, Janez A, Vidmar G, Orehek N, Marc J et al (2021) Switching to denosumab or bisphosphonates after completion of teriparatide treatment in women with severe postmenopausal osteoporosis. Endocr pract 27(9):941–947

    Article  PubMed  Google Scholar 

  54. Kendler DLBH, Massari F, Gielen E, Palacios S, Maddox J, Yan C, Yue S, Dinavahi RV, Libanati C, Grauer A (2019) Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteop Int 30:2437–2448

    Article  CAS  Google Scholar 

  55. McClung MR, Bolognese MA, Brown JP, Reginster JY, Langdahl BL, Shi Y et al (2021) Skeletal responses to romosozumab after 12 months of denosumab. JBMR Plus 5(7):e10512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adami G, Pedrollo E, Rossini M, Fassio A, Braga V, Pasetto E et al (2024) Romosozumab added to ongoing denosumab in postmenopausal osteoporosis, a prospective observational study. JBMR Plus 8(4):ziae016

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD et al (2018) A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103(9):3183–3193

    Article  PubMed  Google Scholar 

  58. Corona G, Vena W, Pizzocaro A, Giagulli VA, Francomano D, Rastrelli G et al (2022) Testosterone supplementation and bone parameters: A systematic review and meta-analysis study. J Endocrinol Invest 45(5):911–926

    Article  CAS  PubMed  Google Scholar 

  59. Snyder PJ, Bauer DC, Ellenberg SS, Cauley JA, Buhr KA, Bhasin S et al (2024) Testosterone treatment and fractures in men with hypogonadism. N Engl J Med 390(3):203–211

    Article  CAS  PubMed  Google Scholar 

  60. Inage K, Orita S, Eguchi Y, Shiga Y, Koda M, Aoki Y et al (2021) Time-course changes in bone metabolism markers and density in patients with osteoporosis treated with romosozumab: A multicenter retrospective study. Yonsei Med J 62(9):829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tominaga A, Wada K, Kato Y, Nishi H, Terayama Y, Okazaki K (2021) Early clinical effects, safety, and appropriate selection of bone markers in romosozumab treatment for osteoporosis patients: A 6-month study. Osteoporos Int 32(4):653–661

    Article  CAS  PubMed  Google Scholar 

  62. Wheeler DC, Winkelmayer WC (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7(1):1–59

    Article  Google Scholar 

  63. Nordholm A, Mace ML, Gravesen E, Hofman-Bang J, Morevati M, Olgaard K et al (2018) Klotho and activin A in kidney injury: Plasma klotho is maintained in unilateral obstruction despite no upregulation of klotho biosynthesis in the contralateral kidney. Am J Physiol Ren Physiol 314(5):F753–F762

    Article  CAS  Google Scholar 

  64. Cejka D, Marculescu R, Kozakowski N, Plischke M, Reiter T, Gessl A et al (2014) Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab 99(1):248–255

    Article  CAS  PubMed  Google Scholar 

  65. Sabbagh Y, Graciolli FG, O’Brien S, Tang W, dos Reis LM, Ryan S et al (2012) Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 27(8):1757–1772

    Article  CAS  PubMed  Google Scholar 

  66. Graciolli FG, Neves KR, Barreto F, Barreto DV, Dos Reis LM, Canziani ME et al (2017) The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int 91(6):1436–1446

    Article  CAS  PubMed  Google Scholar 

  67. Cejka D (2021) Cardiovascular safety of anti-sclerostin therapy in chronic kidney disease. Metabolites. https://doi.org/10.3390/metabo11110770

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hsu CP, Maddox J, Block G, Bartley Y, Yu Z (2022) Influence of renal function on pharmacokinetics, pharmacodynamics, and safety of a single dose of romosozumab. J Clin Pharmacol 62(9):1132–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller PD, Adachi JD, Albergaria BH, Cheung AM, Chines AA, Gielen E et al (2022) Efficacy and safety of romosozumab among postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease. J Bone Miner Res 37(8):1437–1445

    Article  CAS  PubMed  Google Scholar 

  70. Sato M, Inaba M, Yamada S, Emoto M, Ohno Y, Tsujimoto Y (2021) Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J Bone Miner Metab 39(6):1082–1090

    Article  CAS  PubMed  Google Scholar 

  71. Saito T, Mizobuchi M, Kato T, Suzuki T, Fujiwara Y, Kanamori N et al (2023) One-year romosozumab treatment followed by one-year denosumab treatment for osteoporosis in patients on hemodialysis: An observational study. Calcif Tissue Int 112(1):34–44

    Article  CAS  PubMed  Google Scholar 

  72. Langdahl BL, Hofbauer LC, Forfar JC (2021) Cardiovascular safety and sclerostin inhibition. J Clin Endocrinol Metab 106(7):1845–1853

    Article  PubMed  Google Scholar 

  73. Fusaro M, Tripepi G (2023) Romosozumab use and cardiovascular events. J Bone Miner Res 38(3):452–453

    Article  PubMed  Google Scholar 

  74. Seeto AH, Tadrous M, Gebre AK, Lewis JR, Fink HA, Ebeling PR et al (2023) Evidence for the cardiovascular effects of osteoporosis treatments in randomized trials of post-menopausal women: A systematic review and bayesian network meta-analysis. Bone 167:116610

    Article  CAS  PubMed  Google Scholar 

  75. Vestergaard Kvist A, Faruque J, Vallejo-Yague E, Weiler S, Winter EM, Burden AM (2021) Cardiovascular safety profile of romosozumab: A pharmacovigilance analysis of the US food and drug administration adverse event reporting system (FAERS). J Clin Med 10:8. https://doi.org/10.3390/jcm10081660

    Article  CAS  Google Scholar 

  76. Bovijn J, Krebs K, Chen CY, Boxall R, Censin JC, Ferreira T et al (2020) Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay6570

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zheng J, Wheeler E, Pietzner M, Andlauer TFM, Yau MS, Hartley AE et al (2023) Lowering of circulating sclerostin may increase risk of atherosclerosis and its risk factors: Evidence from a genome-wide association meta-analysis followed by mendelian randomization. Arthr Rheumatol 75(10):1781–1792

    Article  CAS  Google Scholar 

  78. Tobias JH (2023) Sclerostin and cardiovascular disease. Curr Osteoporos Rep 21(5):519–526

    Article  PubMed  PubMed Central  Google Scholar 

  79. Delli Poggi C, Fusaro M, Mereu MC, Brandi ML, Cianferotti L (2022) Cardiovascular safety and effectiveness of bisphosphonates: From intervention trials to real-life data. Nutrients. https://doi.org/10.3390/nu14122369

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kang JH, Chung SD, Xirasagar S, Jaw FS, Lin HC (2011) Increased risk of stroke in the year after a hip fracture: A population-based follow-up study. Stroke 42(2):336–341

    Article  PubMed  Google Scholar 

  81. Chiang CH, Liu CJ, Chen PJ, Huang CC, Hsu CY, Chen ZY et al (2013) Hip fracture and risk of acute myocardial infarction: A nationwide study. J Bone Miner Res 28(2):404–411

    Article  PubMed  Google Scholar 

  82. Inose H, Kato T, Tomizawa S, Ariga A, Motoyoshi T, Fukushima K et al (2022) Impact of romosozumab on serum calcium concentration and factors predicting the fluctuations in calcium concentration upon romosozumab administration: A multicenter retrospective study. Bone Rep 17:101635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng J, Wang H, Liu Z, Xu ZL, Wang MX, Chen QM et al (2022) Real-world study of antiresorptive-related osteonecrosis of jaw based on the US food and drug administration adverse event reporting system database. Front Pharmacol 13:1017391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khan AA, Morrison A, Kendler DL, Rizzoli R, Hanley DA, Felsenberg D et al (2017) Case-based review of osteonecrosis of the jaw (ONJ) and application of the international recommendations for management from the international task force on ONJ. J Clin Densitom 20(1):8–24

    Article  PubMed  Google Scholar 

  85. Landi L, Leali PT, Barbato L, Carrassi AM, Discepoli N, Muti PCM et al (2023) Anti-resorptive therapy in the osteometabolic patient affected by periodontitis. A joint position paper of the Italian society of orthopaedics and traumatology (SIOT) and the Italian society of periodontology and implantology (SIdP). J Orthop Traumatol. https://doi.org/10.1186/s10195-023-00713-7

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chouinard L, Felx M, Mellal N, Varela A, Mann P, Jolette J et al (2016) Carcinogenicity risk assessment of romosozumab: A review of scientific weight-of-evidence and findings in a rat lifetime pharmacology study. Regul Toxicol Pharmacol 81:212–222

    Article  CAS  PubMed  Google Scholar 

  87. Toscani D, Bolzoni M, Ferretti M, Palumbo C, Giuliani N (2018) Role of osteocytes in myeloma bone disease: Anti-sclerostin antibody as new therapeutic strategy. Front Immunol 9:2467

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mazziotti G, Tupputi U, Ferrante G, Guglielmi G (2020) Abdominal aortic calcification as a marker of relationship between atherosclerosis and skeletal fragility. J Clin densitom 23(4):539–542

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mazziotti.

Ethics declarations

Conflict of interest

Luisella Cianferotti received fees for consultancy from UCB and fees for lectures from Abiogen Pharma and Bruno Farmaceutici. Cristiana Cipriani served as speaker for Abiogen and in advisory board of IBSA. Andrea Palermo received founds for clinical Studies from, Ascendis Pharma and Takeda, fees for lectures from Amgen, UCB, Bruno Farmaceutici, Theramex, educational Grants from Bruno Farmaceutici, UCB and Amgen. Ombretta Viapiana received fees for consultancy from UCB, Grunenthal, Angelini and fees for lectures from Amgen, Eli Lilly, Galapagos, BMS. Guido Zavatta received fees for lectures from Abiogen Pharma and Bruno Farmaceutici. Gherardo Mazziotti received fees for consultancy and preceptorship from Amgen-UCB and Sanofi and fees for lectures from Theramex and Recordati. Gherardo Mazziotti and Luisella Cianferotti serve as Associate Editors for Journal of Endocrinological Investigation.

Ethical Approval and consent to participate

This paper did not involve human participants and no approval by the Ethics Committee was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cianferotti, L., Cipriani, C., Palermo, A. et al. A practical approach for anabolic treatment of bone fragility with romosozumab. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-024-02395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-024-02395-2

Keywords

Navigation