Skip to main content

Advertisement

Log in

Experimental rat models for Hashimoto’s thyroiditis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Hashimoto’s thyroiditis (HT) is an autoimmune thyroid disease characterized by T lymphocyte-mediated destruction of thyroid follicles. To study the pathogenesis of HT and the efficacy of new substances for its treatment, an easily obtained and adequate to the human disease experimental model is needed. The aim of our study was to find out whether it is possible to induce experimental autoimmune thyroiditis (EAT) similar to Hashimoto’s thyroiditis by injecting with thyroglobulin (Tg) without using agents that enhance its thyroiditogenicity and without taking into account the genetic sensitivity of animals.

Methods

Wistar rats were immunized with freshly isolated rat Tg or porcine Tg. In 8 weeks, histological studies of the thyroid and parathyroid glands were performed. Thyroid function and total serum calcium level were also evaluated.

Results

Immunization with both rat and porcine freshly isolated Tg caused T lymphocytic infiltration of the thyroid gland, thyroid follicle atrophy and degradation in Wistar rats. EAT caused by porcine Tg was characterized by greater severity than EAT induced with rat Tg. In 55% of rats with porcine Tg-induced EAT, oxyphilic metaplasia was detected in the parathyroid glands. In addition, low total serum calcium was observed in these rats.

Conclusion

Two rat models of autoimmune thyroiditis were obtained. EAT caused in Wistar rats by immunization with rat Tg is similar to Hashimoto’s thyroiditis. EAT induced with porcine Tg was accompanied by oxyphil cell metaplasia in the parathyroids and hypocalcemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Hiromatsu Y, Satoh H, Amino N (2013) Hashimoto’s thyroiditis: history and future outlook. Hormones (Athens) 12:12–18. https://doi.org/10.1007/BF03401282

    Article  PubMed  Google Scholar 

  2. Effraimidis G, Wiersinga WM (2014) Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol 170:R241–R252. https://doi.org/10.1530/EJE-14-0047

    Article  CAS  PubMed  Google Scholar 

  3. Weetman AP (2004) Cellular immune responses in autoimmune thyroid disease. Clin Endocrinol (Oxf) 61:405–413. https://doi.org/10.1111/j.1365-2265.2004.02085.x

    Article  CAS  PubMed  Google Scholar 

  4. Canonica GW, Bagnasco M, Kong YM (1986) T cell-mediated mechanisms in autoimmune thyroiditis. Immunol Res 5:305–313. https://doi.org/10.1007/BF02935503

    Article  CAS  PubMed  Google Scholar 

  5. Kotani T, Aratake Y, Hirai K, Fukazawa Y, Sato H, Ohtaki S (1995) Apoptosis in thyroid tissue from patients with Hashimoto’s thyroiditis. Autoimmunity 20:231–236. https://doi.org/10.3109/08916939508995700

    Article  CAS  PubMed  Google Scholar 

  6. Rose NR, Witebsky E (1956) Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thyroid extracts. J Immunol 76:417–427

    Article  CAS  PubMed  Google Scholar 

  7. Kong YM (2007) Experimental autoimmune thyroiditis in the mouse. Curr Protoc Immunol. https://doi.org/10.1002/0471142735.im1507s78

    Article  PubMed  Google Scholar 

  8. Elrehewy M, Kong YM, Giraldo AA, Rose NR (1981) Syngeneic thyroglobulin is immunogenic in good responder mice. Eur J Immunol 11:146–151. https://doi.org/10.1002/eji.1830110216

    Article  CAS  PubMed  Google Scholar 

  9. Lin JD, Fang WF, Tang KT, Cheng CW (2019) Effects of exogenous melatonin on clinical and pathological features of a human thyroglobulin-induced experimental autoimmune thyroiditis mouse model. Sci Rep 9:5886. https://doi.org/10.1038/s41598-019-42442-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Zuo X, Hua C, Zhao Y, Pei X, Tian M (2021) Effects of selenium supplement on B lymphocyte activity in experimental autoimmune thyroiditis rats. Int J Endocrinol 2021:9439344. https://doi.org/10.1155/2021/9439344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Qin L, Sun B, Wu Y, Zhong F, Wu L, Liu T (2021) Transcriptome analysis of the effect of diosgenin on autoimmune thyroiditis in a rat model. Sci Rep 11:6401. https://doi.org/10.1038/s41598-021-85822-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hou Y, Wang T, Guo X, Sun W, Guo X, Wu L, Qin L, Zhang C, Liu T (2018) Protective effects of Jiayan Kangtai granules on autoimmune thyroiditis in a rat model by modulating Th17/Treg cell balance. J Tradit Chin Med 38:380–390

    Article  PubMed  Google Scholar 

  13. Vladutiu AO, Rose NR (1971) Autommune murine thyroiditis relation to histocompatibility (H-2) type. Science 174:1137–1139. https://doi.org/10.1126/science.174.4014.1137

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Weiser P, Pan J, Qian Y, Lu H, Zhang L (2010) Chondroitin sulfate and abnormal contact system in rheumatoid arthritis. Prog Mol Biol Transl Sci 93:423–442. https://doi.org/10.1016/S1877-1173(10)93018-4

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe H, Inaba M, Adachi Y, Sugiura K, Hisha H, Iguchi T, Ito T, Yasumizu R, Inaba K, Yamashita T, Ikehara S (1999) Experimental autoimmune thyroiditis induced by thyroglobulin-pulsed dendritic cells. Autoimmunity 31:273–282. https://doi.org/10.3109/08916939908994073

    Article  CAS  PubMed  Google Scholar 

  16. Li HS, Verginis P, Carayanniotis G (2006) Maturation of dendritic cells by necrotic thyrocytes facilitates induction of experimental autoimmune thyroiditis. Clin Exp Immunol 144:467–474. https://doi.org/10.1111/j.1365-2249.2006.03080.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faustino LC, Li CW, Stefan-Lifshitz M, Kim K, Clarke OB, Tomer Y (2020) A novel mouse model of autoimmune thyroiditis induced by immunization with adenovirus containing full-length thyroglobulin cDNA: implications to genetic studies of thyroid autoimmunity. Thyroid 30:1338–1345. https://doi.org/10.1089/thy.2019.0711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wick G, Brezinschek HP, Hála K, Dietrich H, Wolf H, Kroemer G (1989) The obese strain of chickens: an animal model with spontaneous autoimmune thyroiditis. Adv Immunol 47:433–500. https://doi.org/10.1016/S0065-2776(08)60666-5

    Article  CAS  PubMed  Google Scholar 

  19. Hutchings PR, Verma S, Phillips JM, Harach SZ, Howlett S, Cooke A (1999) Both CD4(+) T cells and CD8(+) T cells are required for iodine accelerated thyroiditis in NOD mice. Cell Immunol 192:113–121. https://doi.org/10.1006/cimm.1998.1446

    Article  CAS  PubMed  Google Scholar 

  20. Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S (2022) The NOD mouse beyond autoimmune diabetes. Front Immunol 13:874769. https://doi.org/10.3389/fimmu.2022.874769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boechat LH, Zollner RL (1999) Reactivity of anti-thyroid antibodies to thyroglobulin tryptic fragments: comparison of autoimmune and non-autoimmune thyroid diseases. Braz J Med Biol Res 32:449–455. https://doi.org/10.1590/S0100-879X1999000400012

    Article  CAS  PubMed  Google Scholar 

  22. Shulman S, Armenia JP (1963) Studies on thyroid proteins. I. The components of hog thyroid tissue, and the preparation of purified thyroglobulin by column chromatography. J Biol Chem 238:2723–2731

    Article  CAS  PubMed  Google Scholar 

  23. Hoshino T, Ui N (1970) Comparative studies on the properties of thyroglobulins from various animal species. Endocrinol Jpn 17:521–533. https://doi.org/10.1507/endocrj1954.17.521

    Article  CAS  PubMed  Google Scholar 

  24. Ciháková D, Sharma RB, Fairweather D, Afanasyeva M, Rose NR (2004) Animal models for autoimmune myocarditis and autoimmune thyroiditis. Methods Mol Med 102:175–193. https://doi.org/10.1385/1-59259-805-6:175

    Article  PubMed  Google Scholar 

  25. Braley-Mullen H, Johnson M, Sharp GC, Kyriakos M (1985) Induction of experimental autoimmune thyroiditis in mice with in vitro activated splenic T cells. Cell Immunol 93:132–143. https://doi.org/10.1016/0008-8749(85)90394-6

    Article  CAS  PubMed  Google Scholar 

  26. Dayan CM, Daniels GH (1996) Chronic autoimmune thyroiditis. N Engl J Med 335:99–107. https://doi.org/10.1056/NEJM199607113350206

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Wang B, Mu K, Zhang JA (2019) The pathogenesis of thyroid autoimmune diseases: new T lymphocytes—cytokines circuits beyond the Th1–Th2 paradigm. J Cell Physiol 234:2204–2216. https://doi.org/10.1002/jcp.27180

    Article  CAS  PubMed  Google Scholar 

  28. Ludgate M (2008) Animal models of autoimmune thyroid disease. In: Weetman AP (ed) Autoimmune diseases in endocrinology. Humana Press, Totowa, pp 79–93

    Chapter  Google Scholar 

  29. Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Rolinski J (2015) Immune disorders in Hashimoto’s thyroiditis: what do we know so far? J Immunol Res 2015:979167. https://doi.org/10.1155/2015/979167

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brazillet MP, Batteux F, Abehsira-Amar O, Nicoletti F, Charreire J (1999) Induction of experimental autoimmune thyroiditis by heat-denatured porcine thyroglobulin: a Tc1-mediated disease. Eur J Immunol 29:1342–1352. https://doi.org/10.1002/(SICI)1521-4141(199904)29:04%3c1342::AID-IMMU1342%3e3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  31. Granjon D, Bonny O, Edwards A (2016) A model of calcium homeostasis in the rat. Am J Physiol Renal Physiol 311:F1047–F1062. https://doi.org/10.1152/ajprenal.00230.2016

    Article  CAS  PubMed  Google Scholar 

  32. Capen CC, Rosol TJ (1989) Recent advances in the structure and function of the parathyroid gland in animals and the effects of xenobiotics. Toxicol Pathol 17:333–345. https://doi.org/10.1177/019262338901700210

    Article  CAS  PubMed  Google Scholar 

  33. Pace V, Scarsella S, Perentes E (2003) Parathyroid gland carcinoma in a Wistar rat. Vet Pathol 40:203–206. https://doi.org/10.1354/vp.40-2-20

    Article  CAS  PubMed  Google Scholar 

  34. Cinti S, Sbarbati A (1995) Ultrastructure of human parathyroid cells in health and disease. Microsc Res Tech 32:164–179. https://doi.org/10.1002/jemt.1070320210

    Article  CAS  PubMed  Google Scholar 

  35. Ilahi A, Muco E, Ilahi TB (2023) Anatomy, head and neck, parathyroid. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537203/. Accessed 6 May 2023.

  36. Christie AC (1967) The parathyroid oxyphil cells. J Clin Pathol 20:591–602. https://doi.org/10.1136/jcp.20.4.591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ding Y, Zou Q, Jin Y, Zhou J, Wang H (2020) Relationship between parathyroid oxyphil cell proportion and clinical characteristics of patients with chronic kidney disease. Int Urol Nephrol 52:155–159. https://doi.org/10.1007/s11255-019-02330-y

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka Y, Funahashi H, Imai T, Seo H, Tominaga Y, Takagi H (1996) Oxyphil cell function in secondary parathyroid hyperplasia. Nephron 73:580–586. https://doi.org/10.1159/000189144

    Article  CAS  PubMed  Google Scholar 

  39. Basile C, Lomonte C (2017) The function of the parathyroid oxyphil cells in uremia: still a mystery? Kidney Int 92:1046–1048. https://doi.org/10.1016/j.kint.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  40. Boquist L (1975) Occurrence of oxyphil cells in suppressed parathyroid glands. Cell Tissue Res 163:465–470. https://doi.org/10.1007/BF00218492

    Article  CAS  PubMed  Google Scholar 

  41. McGregor DH, Lotuaco LG, Rao MS, Chu LL (1978) Functioning oxyphil adenoma of parathyroid gland. An ultrastructural and biochemical study. Am J Pathol 92:691–711

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akamizu T, Amino N (2000) Hashimoto’s thyroiditis. [Updated 2017 Jul 17]. In: Feingold KR, Anawalt B, Blackman MR et al. (eds) Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK285557/. Accessed 28 Apr 2023

  43. Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, Wang X, Li N (2014) Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto’s thyroiditis. Int J Clin Exp Pathol 7:7999–8007

    PubMed  PubMed Central  Google Scholar 

  44. Libbey NP, Nowakowski KJ, Tucci JR (1989) C-cell hyperplasia of the thyroid in a patient with goitrous hypothyroidism and Hashimoto’s thyroiditis. Am J Surg Pathol 13:71–77. https://doi.org/10.1097/00000478-198901000-00011

    Article  CAS  PubMed  Google Scholar 

  45. Barbot N, Guyetant S, Beldent V, Akrass A, Cerf I, Perdrisot R, Bigorgne, JC (1991) Thyroïdite chronique auto-immune et hyperplasie des cellules C. Etude de la sécrétion de calcitonine chez 24 patients [Chronic autoimmune thyroiditis and C-cell hyperplasia. Study of calcitonin secretion in 24 patients]. Ann Endocrinol (Paris) 52:109–112

  46. Klubo-Gwiezdzinska J, Wartofsky L (2022) Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med 132:16222. https://doi.org/10.20452/pamw.16222

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beduleva L, Sidorov A, Terentiev A, Varaksin V, Fomina K, Menshikov I (2023) Reduction in experimental autoimmune thyroiditis by IgG Fc fragments bearing regRF epitopes. Immunol Res 71:83–91. https://doi.org/10.1007/s12026-022-09337-1

    Article  CAS  PubMed  Google Scholar 

  48. Romball CG, Weigle WO (1984) T cell competence to heterologous and homologous thyroglobulins during the induction of experimental autoimmune thyroiditis. Eur J Immunol 14:887–893. https://doi.org/10.1002/eji.1830141005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project number 0827–2020-0012).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LB. Investigation: AS, LB, KF, AT, NS, PI, VV. Writing—original draft: LB, AS, KF. Writing—review and editing: IM.

Corresponding author

Correspondence to L. Beduleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Animal experiments were performed in accordance with the ARRIVE guidelines, the U.K. Animals (Scientific Procedures) Act, 1986, and EU Directive 2010/63/EU for animal experiments. The protocol and procedures employed were ethically reviewed and approved by the Bioethics Committee of Udmurt State University (Date 18/01/2021/No. 2102).

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beduleva, L., Sidorov, A., Fomina, K. et al. Experimental rat models for Hashimoto’s thyroiditis. J Endocrinol Invest 47, 1205–1214 (2024). https://doi.org/10.1007/s40618-023-02240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02240-y

Keywords

Navigation