Skip to main content
Log in

Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The finding of mTOR overactivation in patients affected by pancreatic neuroendocrine tumors (Pa-NETs) led to their treatment with the mTOR inhibitor everolimus. Unfortunately, the efficacy of everolimus is restricted by the occurrence of resistance. The mechanisms leading to Pa-NETs’ progression and resistance are not well understood. Notably, chronic inflammation is implicated in NET development. NF-kB is involved in inflammation and drug resistance mechanisms through the activation of several mediators, including STAT3. In this respect, NF-κB and STAT3 interaction is implicated in the crosstalk between inflammatory and tumor cells.

Methods

We investigated the expression of NF-kB in different Pa-NETs by RT-qPCR and immunohistochemistry. Then, we studied the role of NF-κB and STAT3 interplay in QGP-1 cells. Subsequently, we assessed the impact of NF-κB and STAT3 inhibitors in QGP-1 cell proliferation and spheroids growth. Finally, we evaluated the implication of the NF-kB pathway in everolimus-resistant Pa-NET cells.

Results

We found that the increased NF-kB expression correlates  with a higher grade in Pa-NETs. The activation of the STAT3 pathway induced by TNFα is mediated by NF-kB p65. NF-kB p65 and STAT3 inhibitors decrease QGP-1 viability, spheroids growth, and Pa-NETs cell proliferation. These effects are maintained in everolimus-resistant QGP-1R cells. Interestingly, we found that NF-kB, STAT3, IL-8, and SOCS3 are overexpressed in QGP-1R compared to QGP-1.

Conclusion

Since the NF-kB pathway is implicated in Pa-NETs’ progression and resistance to everolimus, these data could explain the potential use of NF-kB as a novel therapeutic target in Pa-NET patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request in Zenodo repository (https://zenodo.org/deposit/8411582).

References

  1. Dasari A, Shen C, Halperin D et al (2017) Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3:1335–1342. https://doi.org/10.1001/jamaoncol.2017.0589

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nagtegaal ID, Odze RD, Klimstra D et al (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76:182–188. https://doi.org/10.1111/his.13975

    Article  PubMed  Google Scholar 

  3. Pavel M, O’Toole D, Costa F et al (2016) ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 103:172–185

    Article  CAS  PubMed  Google Scholar 

  4. Missiaglia E, Dalai I, Barbi S et al (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28:245–255. https://doi.org/10.1200/JCO.2008.21.5988

    Article  CAS  PubMed  Google Scholar 

  5. Zhou CF, Ji J, Yuan F et al (2011) mTOR activation in well differentiated pancreatic neuroendocrine tumors: a retrospective study on 34 cases. Hepatogastroenterology 58:2140–2143. https://doi.org/10.5754/hge11212

    Article  PubMed  Google Scholar 

  6. Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors for the RAD001 in advanced neuroendocrine tumors, third trial (RADIANT-3) study group. N Engl J Med 364:514–523. https://doi.org/10.1056/NEJMoa1009290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao JJC, Fazio N, Singh S et al (2016) Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387:968–977. https://doi.org/10.1016/S0140-6736(15)00817-X

    Article  CAS  PubMed  Google Scholar 

  8. Vandamme T, Beyens M, De Beeck KO et al (2016) Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Br J Cancer 114:650–658. https://doi.org/10.1038/bjc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berkovic MC, Cacev T, Ivkovic TC et al (2014) New insights into the role of chronic inflammation and cytokines in the etiopathogenesis of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 99:75–84. https://doi.org/10.1159/000362339

    Article  CAS  Google Scholar 

  10. Vitale G, Carra S, Ferraù F et al (2020) Gastroenteropancreatic neuroendocrine neoplasms and inflammation: a complex cross-talk with relevant clinical implications. Crit Rev Oncol Hematol 146:102840

    Article  PubMed  Google Scholar 

  11. Vitale G, Dicitore A, Barrea L et al (2021) From microbiota toward gastro-enteropancreatic neuroendocrine neoplasms: are we on the highway to hell? Rev Endocr Metab Disord 22:511–525. https://doi.org/10.1007/s11154-020-09589-y

    Article  PubMed  Google Scholar 

  12. Temiz-resitoglu M, Sinem D, Cecen P (2017) Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. Eur J Pharmacol 802:7–19. https://doi.org/10.1016/j.ejphar.2017.02.034

    Article  CAS  PubMed  Google Scholar 

  13. Kunsch C, Lang RK, Rosen CA, Shannon MF (1994) Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 153:153–164. https://doi.org/10.4049/jimmunol.153.1.153

    Article  CAS  PubMed  Google Scholar 

  14. Hussain F, Wang J, Ahmed R et al (2010) Cytokine The expression of IL-8 and IL-8 receptors in pancreatic adenocarcinomas and pancreatic neuroendocrine tumours. Cytokine 49:134–140. https://doi.org/10.1016/j.cyto.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  15. Braeuer SJ, Büneker C, Mohr A, Zwacka RM (2006) Constitutively activated nuclear factor-κB, but not induced NF-κB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-05-0231

    Article  PubMed  Google Scholar 

  16. Taniguchi K, Karin M (2018) REVIEWS NF-κB, inflammation, immunity and cancer : coming of age. Nat Publ Gr 18:309–324. https://doi.org/10.1038/nri.2017.142

    Article  CAS  Google Scholar 

  17. Lopez-aguiar AG, Postlewait LM, Ethun CG et al (2019) STAT3 inhibition for gastroenteropancreatic neuroendocrine tumors : potential for a new therapeutic target? J Gastrointest Surg 24:1138–1148

    Article  PubMed  Google Scholar 

  18. Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109:S81–S96

    Article  CAS  PubMed  Google Scholar 

  19. Bassères DS, Baldwin AS (2006) Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830

    Article  PubMed  Google Scholar 

  20. Gilmore TD (2003) The Re1/NF-kappa B/I kappa B signal transduction pathway and cancer. Cancer Treat Res 115:241–265

    Article  CAS  PubMed  Google Scholar 

  21. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19. https://doi.org/10.1016/j.cytogfr.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  22. Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nat Immunol 4:1169–1176

    Article  CAS  PubMed  Google Scholar 

  23. Bromberg JF, Wrzeszczynska MH, Devgan G et al (1999) Stat3 as an oncogene. Cell 98:295–303. https://doi.org/10.1016/S0092-8674(00)81959-5

    Article  CAS  PubMed  Google Scholar 

  24. Yu H, Jove R (2004) The stats of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105

    Article  CAS  PubMed  Google Scholar 

  25. Sansone P, Storci G, Tavolari S et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117:3988–4002. https://doi.org/10.1172/JCI32533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin YZ, Wang YC (2006) Analysis of behaviour of steel beams with web openings at elevated temperatures. Steel Compos Struct 6:15–31. https://doi.org/10.1186/1476-4598-5-15

    Article  CAS  Google Scholar 

  27. Kesanakurti D, Chetty C, Rajasekhar Maddirela D et al (2013) Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene 32:5144–5155. https://doi.org/10.1038/onc.2012.546

    Article  CAS  PubMed  Google Scholar 

  28. Fan Y, Mao R, Yang J (2013) NF- κ B and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4:176–185. https://doi.org/10.1007/s13238-013-2084-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vitali E, Boemi I, Piccini S et al (2020) A novel insight into the anticancer mechanism of metformin in pancreatic neuroendocrine tumor cells. Mol Cell Endocrinol 509:110803. https://doi.org/10.1016/j.mce.2020.110803

    Article  CAS  PubMed  Google Scholar 

  30. Vitali E, Cambiaghi V, Zerbi A et al (2016) Filamin-a is required to mediate SST2 effects in pancreatic neuroendocrine tumours. Endocr Relat Cancer 23:181–190. https://doi.org/10.1530/ERC-15-0358

    Article  CAS  PubMed  Google Scholar 

  31. Vitali E, Boemi I, Rosso L et al (2017) FLNA is implicated in pulmonary neuroendocrine tumors aggressiveness and progression. Oncotarget 8:77330–77340. https://doi.org/10.18632/oncotarget.20473

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vitali E, Boemi I, Tarantola G et al (2020) Metformin and everolimus: a promising combination for neuroendocrine tumors treatment. Cancers (Basel) 12:1–18. https://doi.org/10.3390/cancers12082143

    Article  CAS  Google Scholar 

  33. Lania AG, Mantovani G, Ferrero S et al (2004) Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase A regulatory subunit 1A protein. Cancer Res 64:9193–9198. https://doi.org/10.1158/0008-5472.CAN-04-1847

    Article  CAS  PubMed  Google Scholar 

  34. Herrera-Martínez AD, van den Dungen R, Dogan-Oruc F et al (2019) Effects of novel somatostatin-dopamine chimeric drugs in 2D and 3D cell culture models of neuroendocrine tumors. Endocr Relat Cancer 26:585–599. https://doi.org/10.1530/ERC-19-0086

    Article  PubMed  Google Scholar 

  35. Raj N, Reidy-Lagunes D (2016) Systemic therapies for advanced pancreatic neuroendocrine tumors. Hematol Oncol Clin North Am 30:119–133

    Article  PubMed  Google Scholar 

  36. Lee L, Ito T, Jensen RT (2018) Everolimus in the treatment of neuroendocrine tumors: efficacy, side-effects, resistance, and factors affecting its place in the treatment sequence. Expert Opin Pharmacother 19:909–928. https://doi.org/10.1080/14656566.2018.1476492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508. https://doi.org/10.1158/0008-5472.CAN-05-2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahečić DH, Berković MC, Zjačić-Rotkvić V et al (2020) Inflammation-related cytokines and their roles in gastroenteropancreatic neuroendocrine neoplasms. Bosn J Basic Med Sci 20:445–450. https://doi.org/10.17305/bjbms.2020.4471

    Article  CAS  PubMed Central  Google Scholar 

  39. Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  CAS  PubMed  Google Scholar 

  40. Elliott CL, Allport VC, Loudon JAZ et al (2001) Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 7:787–790. https://doi.org/10.1093/molehr/7.8.787

    Article  CAS  PubMed  Google Scholar 

  41. Taniguchi K, Karin M (2018) NF-B, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324

    Article  CAS  PubMed  Google Scholar 

  42. Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int J Cancer 125:2863–2870. https://doi.org/10.1002/ijc.24748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Jamal SM, Yaseen AA, Alatassi H et al (2017) Strong NFkB expression is associated with high-grade dysplasia in Barrett’s esophagus. Appl Immunohistochem Mol Morphol 25:329–333. https://doi.org/10.1097/PAI.0000000000000359

    Article  CAS  PubMed  Google Scholar 

  44. Sarkar DK, Jana D, Patil PS et al (2013) Role of NF-κB as a prognostic marker in breast cancer: a pilot study in Indian patients. Indian J Surg Oncol 4:242–247. https://doi.org/10.1007/s13193-013-0234-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Annunziata CM, Stavnes HT, Kleinberg L et al (2010) Nuclear factor κB transcription factors are coexpressed and convey a poor outcome in ovarian cancer. Cancer. https://doi.org/10.1002/cncr.25190

    Article  PubMed  Google Scholar 

  46. Inoue S, Ide H, Mizushima T et al (2018) Nuclear factor-kb promotes urothelial tumorigenesis and cancer progression via cooperation with androgen receptor signaling. Mol Cancer Ther 17:1303–1314. https://doi.org/10.1158/1535-7163.MCT-17-0786

    Article  CAS  PubMed  Google Scholar 

  47. Bakshi HA, Quinn GA, Nasef MM et al (2022) Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways. Cells 14:1–15. https://doi.org/10.3390/cells11091502

    Article  CAS  Google Scholar 

  48. Transl S, Author M, August PMC, et al (2022) CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression HHS public access. 14:1–33. https://doi.org/10.5281/zenodo.5797228

  49. Fan Y, Mao R, Yang J (2013) NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4:176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burger M, Hartmann T, Burger JA, Schraufstatter I (2005) KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene 24:2067–2075. https://doi.org/10.1038/sj.onc.1208442

    Article  CAS  PubMed  Google Scholar 

  51. Mcfarland BC, Hong SW, Rajbhandari R et al (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS ONE. https://doi.org/10.1371/journal.pone.0078728

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen H, Bian A, Yang FL et al (2021) Targeting STAT3 by a small molecule suppresses pancreatic cancer progression. Oncogene. https://doi.org/10.1038/s41388-020-01626-z

    Article  PubMed  PubMed Central  Google Scholar 

  53. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324. https://doi.org/10.1038/nprot.2008.226

    Article  CAS  PubMed  Google Scholar 

  54. Khongthong P, Roseweir AK, Edwards J (2019) The NF-KB pathway and endocrine therapy resistance in breast cancer. Endocr Relat Cancer 26:R369–R380. https://doi.org/10.1530/ERC-19-0087

    Article  CAS  PubMed  Google Scholar 

  55. Sciammarella C, Luce A, Riccardi F et al (2020) Lanreotide induces cytokine modulation in intestinal neuroendocrine tumors and overcomes resistance to everolimus. Front Oncol. https://doi.org/10.3389/fonc.2020.01047

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by PRIN 2022CZR88M and P20227KXJK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vitali.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Ethical approval

This research was performed in accordance with the ethical standards of the Independent Ethics Committee of Istituto Clinico Humanitas—IRCCS, Rozzano (Milan) and with the 1964 Helsinki Declaration.

Informed consent

Informed consent was obtained from all individual participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, E., Valente, G., Panzardi, A. et al. Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay. J Endocrinol Invest 47, 1101–1117 (2024). https://doi.org/10.1007/s40618-023-02221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02221-1

Keywords

Navigation