Skip to main content

The Rel/NF-κB/IκB Signal Transduction Pathway and Cancer

  • Chapter
Signal Transduction in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 115))

Conclusions and Perspectives

As outlined herein, there is now much evidence that increased Rel/NF-κB signaling contributes to human cancer, and that this pathway will continue to receive attention as a promising molecular target for cancer therapy and prevention. However, there remain many molecular details to resolve. Moreover, at least in some cases, constitutive p50-RELA activity may be an adaptation of certain tumor cell lines to growth in tissue culture or may be a symptom of an abnormal, tumor-induced differentiation program. For example, Cogswell et al. (2000) found that primary human breast cancer tumor cells have active p52, REL, and BCL-3, whereas breast cancer cell lines have constitutively active RELA. Consistent with that finding, over-expression of RELA reduces the tumorigenicity of one breast cancer cell line in vivo (Ricca et al., 2001). Finally, given that the Rel/NF-κB pathway can have opposite effects on growth and apoptosis in different cell types, all cancers may not respond in the same way to inhibition of the NF-κB pathway. Indeed, overexpression of the IκBα super-repressor promotes skin carcinomas in one transgenic mouse model system (van Hogerlinden et al., 1999). Thus, the growth and survival of a given tumor cell type is likely to depend on a balance between the activity of the Rel/NF-κB pathway and the activity of many other signaling pathways in ways that are not always easy to predict. In addition, as documented in this collection of articles, it is likely that the Rel/NF-κB pathway is only one of several signaling pathways that are commonly activated in human cancers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. (2001). Proteasome inhibition in cancer: development of PS-341. Seminars in Oncology, 28, 613–619.

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I.S., Rosenwald, A., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511.

    CAS  PubMed  Google Scholar 

  • Bais, C. Santomasso, B., Coso, O., Arvanitakis, L, Raaka, E. G., Gutkind, J. S., et al. (1998). G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature, 391, 86–89.

    CAS  PubMed  Google Scholar 

  • Baldwin, A. S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB Journal of Clinical Investigation, 107, 241–246.

    CAS  PubMed  Google Scholar 

  • Bargou, R. C., Emmerich, F., Krappmann, D., Bommert, K., Mapara, M. Y., Arnold, W., et al. (1997). Constitutive NF-κB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. Journal of Clinical Investigation, 100, 2961–2969.

    CAS  PubMed  Google Scholar 

  • Bargou, R. C., Leng, C., Krappmann, D., Emmerich, F., Mapara, M. Y., Bommert, K., et al. (1996). High-level nuclear NF-κB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood, 87, 4340–4347.

    CAS  PubMed  Google Scholar 

  • Barkett, M., & Gilmore T. D. (1999). Control of apoptosis by Rel/NF-κB transcription factors. Oncogene, 18,-6924.

    Article  Google Scholar 

  • Barth, T. F., Bentz, M., Leithauser, F., Stilgenbauer, S., Siebert, R., Scholtter, M., et al. (2001). Molecular-cytogenetic comparison of mucosa-associated marginal zone B-cell lymphoma and large B-cell lymphoma arising in the gastro-intestinal tract. Genes, Chromosomes & Cancer, 31, 316–325.

    CAS  Google Scholar 

  • Barth, T. F. E., Döhner, H., Werner, C. A., Stilgenbauer, S., Schlotter, M., Pawlita, M., et al. (1998). Characteristic pattern of chromosomal gains and losses in primary large B-cell lymphomas of the gastrointestinal tract. Blood, 91, 4321–4330.

    CAS  PubMed  Google Scholar 

  • Baumann, B., Weber, C. K., Troppmair, J., Whiteside, S., Israël, A., Rapp, U. R., et al. (2000). Raf induces NF-κB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proceedings of the National Academy of Sciences USA, 97, 4615–4620.

    Article  CAS  Google Scholar 

  • Beg, A. A., Sha, W.C., Bronson, R. T., Ghosh, S., & Baltimore, D. (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature, 376, 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Berenson, J. R., Ma, H. M., & Vascio, R. (2001). The role of nuclear factor-κB in the biology and treatment of multiple myeloma. Seminars in Oncology, 28, 626–633.

    CAS  PubMed  Google Scholar 

  • Besancon, F., Atfi, A., Gespach, C., Cayre, Y. E., & Bourgeade, M. F. (1998). Evidence for a role of NF-κB in the survival of hematopoietic cells mediated by interleukin-3 and the oncogenic TEL/platelet-derived growth factor β fusion protein. Proceedings of the National Academy of Sciences USA, 95, 8081–8086.

    Article  CAS  Google Scholar 

  • Biswas, D. K., Cruz, A. P, Gansberger, E., & Pardee, A. B. (2000). Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proceedings of the National Academy of Sciences USA, 97, 8542–8547.

    Article  CAS  Google Scholar 

  • Biswas, D. K., Dai, S.-C., Cruz, A., Weiser, B., Graner, E., & Pardee, A. B. (2000). The nuclear factor κB (NF-κB) a potential therapeutic target for estrogen receptor breast cancers. Proceedings of the National Academy of Sciences USA, 98, 10386–10391.

    Google Scholar 

  • Bours, V., Dejardin, E., Goujon-Letawe, F., Merville, M.-P., & Castronovo, V. (1994), The NF-κB transcription factor and cancer: high expression of NF-κB and IκB-related proteins in tumor cell lines. Biochemical Pharmacology, 47, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Brantley, D. M., Chen, C.-L., Muraoka, R. S., Bushdid, P. B., Bradberry, J. L., Kitterell, F., et al. (2001). Nuclear factor-κB (NF-κB regulates proliferation and branching in mouse mammary epithelium. Molecular Biology of the Cell, 12, 1445–1455.

    CAS  PubMed  Google Scholar 

  • Caamaño, J.H., Rizzo, C. A., Durham, S. K., Barton, D.S., Raventós-Suárez, C., Snapper, C. M., et al. (1997). NF-κB2 (pl00/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. Journal of Experimental Medicine, 187, 185–196.

    Google Scholar 

  • Cabannes, E., Khan, G., Aillet, F., Jarret, R. F., & Hay, R. T. (1999). Mutations in the IºBα gene in Hodgkin’s disease suggest a tumour suppressor role for IºBα Oncogene, 18, 6959–6964.

    Article  Google Scholar 

  • Cahir McFarland, E. D., Davidson, D. M., Schauer, S. L., Duong, J., & Kieff, E. (2000). NF-ºB inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proceedings of the National Academy of Sciences USA, 97, 6055–6060.

    CAS  Google Scholar 

  • Cahir McFarland, E. D., Izumi, K. M., & Mosialos, G. (1999). Epstein-Barr virus transformation: involvement of latent membrane protein 1-mediated activation of NF-ºB Oncogene, 18, 6959–6964.

    CAS  PubMed  Google Scholar 

  • Cannon, M., & Cesarman, E. (2000). Kaposi’s sarcoma-associated herpes virus and acquired immunodeficiency syndrome-related malignancy. Seminars in Oncology, 27, 409–419.

    CAS  PubMed  Google Scholar 

  • Cao, Y., Bonizzi, G., Seagroves, T. N., Greten, F. R., Johnson, R., Schmidt, E.V., et al. (2001). IKKα provides an essential link between RANK signaling and cyclin Dl expression during mammary gland development. Cell, 107, 763–775.

    Article  CAS  PubMed  Google Scholar 

  • Carrasco, D., Rizzo, C. A., Dorfman, K., & Bravo, R. (1996). The v-rel oncogene promotes malignant T-cell leukemia/lymphpma in transgenic mice. EMBO Journal, 15, 3640–3650.

    CAS  PubMed  Google Scholar 

  • Carrasco, D., Perez, P., Lewin, A., & Bravo, R. (1997). IκBα overexpression delays tumor formation in v-rel transgenic mice. Journal of Experimental Medicine, 186, 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Carter, R. A., Geyer, B. C., Xie, M., Acevedo-Suarez, C. A., & Ballard, D. W. (2001), Persistent activation of NF-κB by the Tax transforming protein involves chronic phosphorylation of IºB kinase subunits IKKβ and IKKγ Journal of Biological Chemistry, 276, 24445–24448.

    CAS  PubMed  Google Scholar 

  • Chang, C.-C., Zhang, J., Lombardi, L., Neri, A., & Dalla-Favera, R. (1995). Rearranged NFKB-2 genes in lymphoid neoplasms code for constitutively active nuclear transactivators. Molecular and Cellular Biology, 15, 5180–5187.

    CAS  PubMed  Google Scholar 

  • Chen, F. E., & Ghosh, G. (1999). Regulation of DNA binding by Rel/NF-κB transcription factors: structural views. Oncogene, 18, 6845–6852.

    CAS  PubMed  Google Scholar 

  • Ciana, P., Neri, A., Cappellini, C., Cavallo, F., Pomati, M., Chang, C.-C., et al. (1997). Constitutive expression of lymphoma-associated NFKB-2/Lyt-10 proteins is tumorigenic in murine fibroblasts. Oncogene, 14, 1805–1810.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson, R. W., Heeley, J. L., Chapman, R., Aillet, F., Hay, R. T., Wyllie, A., et al. (2000). NF-kB inhibits apoptosis in murine mammary epithelia. Journal of Biological Chemistry, 275, 12737–12742.

    Article  CAS  PubMed  Google Scholar 

  • Cogswell, P. C., Guttridge, D. C., Funkhouser, W. K., & Baldwin Jr., A. S. (2000). Selective activation of NF-kB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene, 19, 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R. E., Brown, K. D., Siebenlist, U., & Staudt, L. M. (2001). Constitutive nuclear factor kB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. Journal of Experimental Medicine, 194, 1861–1874.

    Article  CAS  PubMed  Google Scholar 

  • Dechend, R., Hirano, F., Lehmann, K., Heissmeyer, V., Ansieau, S., Wulczyn, F. G., et al. (1999). The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene, 18, 3316–3323.

    Article  CAS  PubMed  Google Scholar 

  • Dejardin, E., Bonizzi, G., Bellahcène, A., Castronovo, V., Merville, M.-P., & Bours, V. (1995). Highly-expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene, 11, 1835–1841.

    CAS  PubMed  Google Scholar 

  • Dejardin, E., Deregowski, V., Chapelier, M., Jacobs, N., Gielen, J., Merville, M.-P., et al. (1999). Regulation of NF-κB activity by IκB-related proteins in adenocarcinoma cells. Oncogene, 18, 2567–2577.

    Article  CAS  PubMed  Google Scholar 

  • Diao, J., Garces, R., & Richardson, C. D. (2001). X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine & Growth Factor Reviews, 12, 189–205.

    Article  CAS  Google Scholar 

  • Emmerich, F., Meiser, M., Hummel, M., Demel, G., Foss, H.-D., Jundt, F., et al. (1999). Overexpression of IκBα without inhibition of NF-κB activity and mutations in the IκBα gene in Reed-Sternberg cells. Blood, 94, 3129–3134.

    CAS  PubMed  Google Scholar 

  • Epinat, J.-C., & Gilmore, T. D. (1999). Diverse agents act at multiple levels to inhibit the Rel/NF-κB signal transduction pathway. Oncogene, 18, 6896–6909.

    Article  CAS  PubMed  Google Scholar 

  • Epinat, J.-C., Kazandjian, D., Harkness, D. D., Petros, S., Dave, J., White, D. W., et al. (2000). Mutant envelope residues confer a transactivation function onto N-terminal sequences of the v-Rel oncoprotein. Oncogene, 19, 599–607.

    CAS  PubMed  Google Scholar 

  • Fantl, V., Stamp, G., Andrews, A., Rosewell, I., & Dickson, C. (1995). Mice lacking cyclin Dl are small and show defects in eye and mammary gland development. Genes & Development, 9, 2364–2372.

    CAS  Google Scholar 

  • Feuillard, J., Schuhmacher, M., Kohanna, S., Asso-Bonnet, M., Ledeur, F., Joubert-Caron, R., et al. (2000). Inducible loss of NF-κB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood, 95, 2068–2075.

    CAS  PubMed  Google Scholar 

  • Finco, T.S., Westwick, J. K., Norris, J. L., Beg, A. A., Der, C. J., & Baldwin Jr., A. S. (1997). Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. Journal of Biological Chemistry, 272, 24113–24116.

    Article  CAS  PubMed  Google Scholar 

  • Gapuzan, M.-E., Yufit, P., & Gilmore, T. D. (2002). Immortalized embryonic mouse fibroblasts lacking the RelA subunit of transcription factor NF-κB have a malignantly transformed phenotype. Oncogene, in press.

    Google Scholar 

  • Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T., & Grumont, R. (1999). Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene, 19, 6888–6895.

    Google Scholar 

  • Geymayer, S., & Doppler, W. (2000). Activation of NF-kB p50/p65 is regulated in the developing mammary gland and inhibits STATS-mediated b-casein gene expression. FASEB Journal, 14, 1159–1170.

    CAS  PubMed  Google Scholar 

  • Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kB and Rel proteins: evolutionary conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore, T. D. (1999). The Rel/NF-kB signal transduction pathway, introduction. Oncogene, 18, 6842–6844.

    CAS  PubMed  Google Scholar 

  • Gilmore, T. D. (1999). Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene, 18, 6925–6937.

    CAS  PubMed  Google Scholar 

  • Gilmore, T. D., Cormier, C., Jean-Jacques, J., & Gapuzan, M.-E. (2001). Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene, 20, 7098–7103.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore, T. D., Gapuzan, M.-E., Kalaitzidis, D., & Starczynowski, D. (2002). Rel/NF-kB/IkB signal transduction in the generation and treatment of human cancer. Cancer Letters, in press.

    Google Scholar 

  • Gilmore, T. D., Koedood, M., Piffat, K. A., & White, D. W. (1996). Rel/NF-κB-κB/IκB proteins and cancer. Oncogene, 13, 1367–1378.

    CAS  PubMed  Google Scholar 

  • Gilmore, T. D., White, D. W., Sarkar, S., & Sif, S. (1995). Malignant transformation of cells by the v-Rel oncoprotein. In G. M. Cooper, R. Greenberg Temin & B. Sugden (Eds.), The DNA provirus: Howard Temin’s scientific legacy (pp. 109–128). Washington DC: ASM Press.

    Google Scholar 

  • Goff, L. K., Neat, M. J., Crawley, C. R., Jones, L., Jones, E., Lister, T. A., et al. (2000). The use of real-time quantitative polymerase chain reaction and comparative genomic hybridization to identify amplification of the REL gene in follicular lymphoma. British Journal of Haematology, 111, 618–625.

    Article  CAS  PubMed  Google Scholar 

  • Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G., & Baldwin Jr., A. S. (1999). NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Molecular and Cellular Biology, 19, 5785–5799.

    CAS  PubMed  Google Scholar 

  • Guzman, M. L., Neering, S. J., Upchurch, D., Grimes, B., Howard, D. S., Rizzieri, D. A., et al. (2001). Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, 98, 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, S., Yamamoto, M., Ueno, Y., Ikeda, K., Ohshima, K., Soma, G., et al. (2001). Expression of nuclear factor-κB tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurologia Medico-Chirufica, 41, 187–195.

    CAS  Google Scholar 

  • He, Z., Xin, B., Yang, X., Chan, C., & Cao, L. (2000). Nuclear factor-κB activation is involved in LMPl-mediated transformation and tumorigenesis of rat-1 fibroblasts. Cancer Research, 60, 1845–1848.

    CAS  PubMed  Google Scholar 

  • Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., & Strauss, M. (1999). NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1 to S phase transition. Molecular and Cellular Biology, 19, 2690–2698.

    CAS  PubMed  Google Scholar 

  • Hinz, M., Loser, P., Mathas, S., Krappmann, D., Dörken, B., & Scheidereit, C. (2001), Constitutive NF-κB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood, 97, 2798–2807.

    Article  CAS  PubMed  Google Scholar 

  • Houldsworth, J., Mathew, S., Rao, P. H., Dyomina, K., Louie, D. C., Parsa, N., et al. (1996). REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood, 87, 25–29.

    CAS  PubMed  Google Scholar 

  • Hrdlicková, R., Nehyba, J., & Humphries, E. H. (1994). In vivo evolution of c-rel oncogenic potential. Journal of Virology, 68, 2371–2382.

    PubMed  Google Scholar 

  • Huang, D. B., Chen, Y. Q., Ruetsche, M., Phelps, C. B., & Ghosh, G. (2001a). X-ray crystal structure of proto-oncogene product c-Rel bound ot the CD28 response element of IL-2. Structure, 9, 669–678.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Pettaway, C. A., Uehara, H., Bucana, C. D., & Fidler, I. J. (2001b). Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 20, 4188–4197.

    CAS  PubMed  Google Scholar 

  • Huxford, T., Huang, D.-B., Malek, S., & Ghosh, G. (1998). The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-kB inactivation. Cell, 95, 759–770.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, H., Carrasco, D., Claudio, E., Ryseck, R.-P., & Bravo, R. (1998). Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-κB, Journal of Experimental Medicine, 186, 999–1014.

    Google Scholar 

  • Jacobs, M. D., & Harrison, S. (1998). Structure of an IκBα/NF-κB complex. Cell, 95, 749–758.

    Article  CAS  PubMed  Google Scholar 

  • Jeang, K. T. (2001). Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-κB, Cytokine and Growth Factor Reviews, 12, 207–217.

    CAS  PubMed  Google Scholar 

  • Joos, S., Otaño-Joos, J. I., Ziegler, S., Brüderlein, S., du Manoir, S., Bentz, M., et al. (1996). Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood, 87, 1571–1578.

    CAS  PubMed  Google Scholar 

  • Jungnickel, B., Staratscheck-Jox, A., Braunninger, A., Speiker, T., Wolf, J., Diehl, V., et al. (1999). Clonal deleterious mutations in the NF-κBα gene in the malignant cells in Hodgkin’s lymphoma, Journal of Experimental Medicine, 191, 395–402.

    Google Scholar 

  • Kalaitzidis, D., & Gilmore, T. D. (2002). Genomic organization and expression of the rearranged REL proto-oncogene in human B-cell lymphoma cell line RC-K8. Genes, Chromsomes & Cancer, in press.

    Google Scholar 

  • Kamens, J., Richardson, P., Mosialos, G., Brent, R., & Gilmore, T. D. (1990). Oncogenic transformation by v-Rel requires an amino-terminal activation domain. Molecular and Cellular Biology, 10, 2840–2847.

    CAS  PubMed  Google Scholar 

  • Karin, M. (1999). How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene, 18, 6867–6874.

    Article  CAS  PubMed  Google Scholar 

  • Karin, M. & Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual Review of Immunology, 18, 621–663.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh, K. T., Hafer, L. J., Kim, D. W., Mann, K. K., Sherr, D. H., Rogers, A. E., et al. (2001). Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. Journal of Cell Biochemistry, 82, 387–398.

    CAS  Google Scholar 

  • Keller, S. A., Schattner, E. J., & Cesarman, E. (2000). Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood, 96, 2537–2542.

    CAS  PubMed  Google Scholar 

  • Kim, K. E., Gu, C., Thakur, S., Viera, E., Lin, J. C., & Rabson, A. B. (2000). Transcriptional regulatory effects of lymphoma-associated NFKB2/lyt10 protooncogenes. Oncogene, 19, 1334–1345.

    CAS  PubMed  Google Scholar 

  • Kordes, U., Krappmann, D., Heissmeyer, V., Ludwig, W. D., & Scheidereit, C. (2000). Transcription factor NF-κB is constitutively active in acute lymphoblastic leukemia cells. Leukemia, 14, 399–402.

    Article  CAS  PubMed  Google Scholar 

  • Krappmann, D., Emmerich, F., Kordes, U., Scharschmidt, E., Dörken, B., & Scheidereit, C. (1999). Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed Sternberg cells. Oncogene, 18, 943–953.

    Article  CAS  PubMed  Google Scholar 

  • Kunsch, C., Ruben, S. M., & Rosen, C. A, (1992). Selection of optimal κB/Rel DNA-binding motifs: interaction of both subunits of NF-κB with DNA is required for transcriptional activation. Molecular and Cellular Biology, 12, 4412–4421.

    CAS  PubMed  Google Scholar 

  • Lenardo, M., & Siebenlist, U. (1994). Bcl-3-mediated nuclear regulation of the NF-κB trans-activating factor. Immunology Today, 15, 145–147.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y.-L., & Lin, J.-K. (1997). (−)-epigallacatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κB. Molecular Pharmacology, 52, 465–472.

    CAS  PubMed  Google Scholar 

  • Lind, D. S., Hochwald, S. N., Malaty, J., Rekkas, S., Hebig, P., Mishra, G., et al. (2001). Nuclear factor-κB is upregulated in colorectal cancer. Surgery, 130, 363–369.

    Article  CAS  PubMed  Google Scholar 

  • Lu, D., Thompson, J. D., Gorski, G. K., Rice, N. R., Mayer, M. G., & Yunis, J. J. (1991). Alterations at the rel locus in human lymphoma, Oncogene, 6, 1235–1241.

    CAS  PubMed  Google Scholar 

  • McKeithan, T. W., Takimoto, G, S., Ohno, H., Bjorling, V. S., Morgan, R., Hecht, B. K., et al. (1997). BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: a molecular and cytogenetic study. Genes, Chromosomes & Cancer, 20, 64–72.

    CAS  Google Scholar 

  • Migliazza, A., Lombardi, L., Rocchi, M., Trecca, D., Chang, C.-C., Antonacci, R., et al. (1994). Heterogeneous chromosomal aberrations generate 3− truncations of the NFKB2/lyt-10 gene in lymphoid malignancies. Blood, 84, 3850–3860.

    CAS  PubMed  Google Scholar 

  • Mosialos, G., & Gilmore, T. D. (1993). v-Rel and c-Rel are differentially affected by mutations at a consensus protein kinase recognition sequence. Oncogene, 8, 721–730.

    CAS  PubMed  Google Scholar 

  • Musgrove, E. A., Hui, R., Sweeney, K. J., Watts, C. K., & Sutherland, R. L. (1996). Cyclins and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 1, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, H., Ikebe, T., Beppu, M., & Shirasuma, K. (2001). High expression levels of nuclear factor κB, IκB kinase β and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer, 92, 3037–3044.

    Article  CAS  PubMed  Google Scholar 

  • Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet Jr., R. J., & Sledge Jr., G. W. (1997). Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17, 3629–3639.

    CAS  PubMed  Google Scholar 

  • Neat, M. J., Foot, N., Jenner, M., Goff, L., Ashcroft, K., Burford, D., et al. (2001). Localisation of a novel region of recurrent amplification in follicular lymphoma to an ∼6.8 Mb region of 13q32–33, Genes, Chromosomes & Cancer, 32, 236–243.

    CAS  Google Scholar 

  • Nehyba, J., Hrdlicková, R., & Bose Jr., H. R. (1997). Differences in κB DNA-binding properties of v-Rel and c-Rel are the result of oncogenic mutations in three distinct functional regions of the Rel protein. Oncogene, 14, 2881–2897.

    Article  CAS  PubMed  Google Scholar 

  • Neri, A., Chang, C.-C., Lombardi. L., Salina, M., Malolo, A. T., Chaganti, R. S. K., et al. (1991). B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB p50. Cell, 67, 1075–1087.

    Article  CAS  PubMed  Google Scholar 

  • O’Byrne, K. J., & Dalgleish, A. G. (2001). Chronic immune activation and inflammation as the cause of malignancy. British Journal of Cancer, 85, 473–483.

    CAS  PubMed  Google Scholar 

  • Ondrey, F. G., Dong, G., Sunwoo, J., Chen, Z., Wolf, J. S., Crowl-Bancroft, C. V., et al. (1999). Constitutive activation of transcription factors NF-κB, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Molecular Carcinogenesis, 26, 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Ong, S. T., Hackbarth, M. L., Degenstein, L. C., Baunoch, D. A., Anastasi, J., & McKeithan, T. W. (1998). Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice. Oncogene, 16, 2333–2343.

    Article  CAS  PubMed  Google Scholar 

  • Oya, M., Ohtsubo, M., Takayanagi, A., Tachibana, M., Shimizu, N., & Murai, M. (2001). Constitutive activation of NF-κB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene, 20, 3888–3896.

    Article  CAS  PubMed  Google Scholar 

  • Pahl, H. L. (1999). Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 18, 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  • Palanisamy, N., Abou-Elella, A. A., Chaganti, S. R., Houldsworth, J., Offit, K., Louie, D. C., et al. (2002). Similar patterns of genomic alterations characterize primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma. Genes, Chromosomes & Cancer, 33, 114–122.

    CAS  Google Scholar 

  • Palayoor, S. T., Yourmell, M. Y., Calderwood, S. K., Coleman, C. N., & Price, B. D. (1999). Constitutive activation of IκB kinase and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene, 18, 7389–7394.

    Article  CAS  PubMed  Google Scholar 

  • Pati, S., Cavrois, M., Guo, H. G., Foulke Jr., J. S., Kim, J., Feldman, R. A., et al. (2001). Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. Journal of Virology, 75, 8660–8673.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R. T., & Maniatis, T. (2001). A new family of IKK-related kinases may function as IκB kinase kinases. Biochimica et Biophysica Acta, 2, M57–M62.

    Google Scholar 

  • Pianetti, S., Arsura, M., Romieu-Mourez, R., Coffey, R. J., & Sonenshein, G. E. (2000). Her-2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene, 20, 1287–1299.

    Google Scholar 

  • Purcell, N. H, Yu, C., He, D., Xiang, J., Paran, N., DiDonato, J. A., et al. (2001). Activation of NF-κB by hepatitis B virus X protein through an I_B kinase-independent mechanism, American Journal of Physiology — Gastrointestinal and Liver Physiology, 280, G669–G677.

    CAS  PubMed  Google Scholar 

  • Rao, P. H., Houldsworth, J., Dyomina, K., Parsa, N. Z., Cigudosa, J. C., & Louie, D. C. (1998). Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood, 92, 234–240.

    CAS  PubMed  Google Scholar 

  • Reuther, J. Y., Reuther, G. W., Cortez, D., Pendergast, A. M., & Baldwin Jr., A. S. (1998). A requirement for NF-κB activation in Bcr-Abl mediated transformation. Genes & Development, 12, 968–981.

    CAS  Google Scholar 

  • Ricca, A., Biroccio, A., Trisciuoglio, D., Cippitelli, M., Zupi, G., & Bufalo, D. D. (2001). rela over-expression reduces tumorigenicity and activates apoptosis in human cancer cells. British Journal of Cancer, 85, 1914–1921.

    Article  CAS  PubMed  Google Scholar 

  • Sachdev, S., & Hannink, M, (1998). Loss of I_B_-mediated control over nuclear import and DNA-binding enables oncogenic activation of c-Rel. Molecular and Cellular Biology, 18, 5445–5456.

    CAS  PubMed  Google Scholar 

  • Santos, S. C., Monni, R., Bouchaert, I., Bernard, O., Gisselbrecht, S., Gouilleux, F., et al. (2001). Involvement of the NF-κB pathway in the transforming properties of the TEL-Jak2 leukemogenic fusion protein. FEBS Letters, 497, 148–152.

    CAS  PubMed  Google Scholar 

  • Sasaki, N., Morisaki, T. Hashizume, K., Yao, T., Tsuneyoshi, M., Noshiro, H., et al. (2001). Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human gastric carcimoma tissue. Clinical Cancer Research, 7, 4136–4142.

    CAS  PubMed  Google Scholar 

  • Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., et al. (2001). Activation by IKKα of a second, evolutionarily conserved, NF-_B signaling pathway. Science, 293, 1495–1499.

    Article  CAS  PubMed  Google Scholar 

  • Seppanen, M. & Vihko, K.K. (2000). Activation of transcription factor NF-κB by growth inhibitory cytokines in vulvar carcinoma cells. Immunology Letters, 74, 103–109.

    CAS  PubMed  Google Scholar 

  • Shinkura, R, Kitada, K., Matsuda, F., Tashiro, K., Ikuda, K., Suzuki, M., et al. (1999). Alymphoplasia is caused by a point mutation in the mouse gene encoding the NF-κB-inducing kinase. Nature Genetics, 22, 74–77.

    CAS  PubMed  Google Scholar 

  • Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutor, J. L., Aguiar, R. C. T., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 8, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Sicinksi, P., Donaher, J. L., Parker, S. B., Li, T., Fazeli, A., Gardner, H., et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and the breast. Cell, 82, 621–630.

    Google Scholar 

  • Silverman, N., & Maniatis, T. (2001). NF-κB signaling pathways in mammalian and insect innate immunity. Genes & Development, 15, 2321–2342.

    Article  CAS  Google Scholar 

  • Sovak, M. A., Bellas, R. E., Kim, D. W., Zanieski, G. J., Rogers, A. E., Traish, A. M., et al. (1997). Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. Journal of Clinical Investigation, 100, 2952–2960.

    CAS  PubMed  Google Scholar 

  • Staudt, L. M. (2000). The molecular and cellular origins of Hodgkin’s disease. Journal of Experimental Medicine, 191, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S.-C., & Ballard, D. W. (1999). Peristent activation of NF-κB by the Tax transforming protein of HTLV-1: hijacking cellular IκB kinases. Oncogene, 18, 6948–6958.

    CAS  PubMed  Google Scholar 

  • Tai, D. L., Tsai, S. L., Chang, Y. H., Huang, S. N., Chen, T. C., Chang, K. S., et al. (2000). Constitutive activation of nuclear factor κB in hepatocellular carcinoma. Cancer, 89, 2274–2281.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, S., Lin, H.-C., Tseng, W.-T., Kumar, S., Bravo, R., Foss, F., et al. (1994). Rearrangement and altered expression of the NFKB-2 gene in human cutaneous T-lymphoma cells. Oncogene, 9, 2335–2344.

    CAS  PubMed  Google Scholar 

  • van Hogerlinden, M., Rozell, B. L., Åhrlund-Richter, L., & Toftgård, R. (1999). Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Research, 59, 3299–3303.

    PubMed  Google Scholar 

  • Visconti, R., Cerutti, J., Battista, S., Fedele, M., Trapasso, F., Zeki, K., et al. (1997). Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκB p65 protein expression. Oncogene, 15, 1987–1994.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K., & Chiao, P. J. (1999). The NF-κB RelA transcription factor is constiutively activated in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 5, 119–127.

    CAS  PubMed  Google Scholar 

  • Weil, R., Sirma, H., Giannini, C., Kremsdoft, D., Bessia, C., Dargemont, C., et al. (1999). Direct association and nuclear import of the hepatitits B virus X protein with the NF-κB inhibitor IκBα. Molecular and Cellular Biology, 19, 6345–6354.

    CAS  PubMed  Google Scholar 

  • Westerheide S. D., Mayo M. W., Anest, V., Hanson, J. L., & Baldwin Jr., A. S. (2001). The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G1 transition. Molecular and Cellular Biology, 21, 8428–8436

    Article  CAS  PubMed  Google Scholar 

  • White, D. W., Pitoc, G. A., & Gilmore, T, D. (1996). Interaction of the v-Rel oncoprotein with NF-κB and IκB proteins: heterodimers of a transformation-defective v-Rel mutant and NF-κB p52 are functional in vitro and in vivo. Molecular and Cellular Biology, 16, 1169–1178.

    CAS  PubMed  Google Scholar 

  • Whitehead, I. P., Lambert, Q. T., Glaven, J. A., Abe, K., Rossman, K. L., Mahon, G. M., et al. (1999). Dependence of Dbl and Dbs transformation on MEK and NF-κB activation. Molecular and Cellular Biology, 19, 7759–7770.

    CAS  PubMed  Google Scholar 

  • Xiao, G. Cvijic, M. E., Fong, A., Warhaj, E. W., Uhik, M. T., Waterfield, M., et al. (2001a). Retroviral oncoprotein Tax induces processing of NF-κB2/p100 in T cells: evidence for the involvement of IKKα, EMBO Journal, 20, 6805–6815.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, G., Harhaj, E. W., & Sun, S.-C. (2000). Domain-specific interaction with IκB kinase (IKK) regulatory subunit IKKγ is an essential step in Tax-mediated activation of IKK. Journal of Biological Chemistry, 275, 34060–34067.

    CAS  PubMed  Google Scholar 

  • Xiao, G., Harhaj, E. W., & Sun, S.-C. (2001b). NF-κB-inducing kinase regulates the processing of NF-κB2 pl00. Molecular Cell, 7, 401–409.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., & Gaynor, R.B. (2001). Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. Journal of Clinical Investigation, 107, 135–142.

    CAS  PubMed  Google Scholar 

  • Yamaoka, S., Courtois, G., Bessia, C., Whiteside, S. T., Weil, R., Agou, F., et al. (1998). Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell, 93, 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., & Richmond, A. (2001). Constitutive IκB kinase activity correlates with nuclear factor-κB activation in human melanoma cells. Cancer Research, 61, 4901–4909.

    CAS  PubMed  Google Scholar 

  • Yin, M.-J., Yamamoto, Y., & Gaynor, R. B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-α. Nature, 396, 77–80.

    CAS  PubMed  Google Scholar 

  • Yu, Q., Geng, Y., & Sicinski, P. (2001). Specific protection against breast cancers by cyclin Dl ablation. Nature, 411, 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Chang, C.-C., Lombardi, L., & Dalla-Favera, R. (1994). Rearranged NFKB2 gene in the HUT78 T-lymphoma cell line codes for a constitutively nuclear factor lacking transcriptional repressor functions. Oncogene, 9, 1931–1937.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gilmore, T.D. (2004). The Rel/NF-κB/IκB Signal Transduction Pathway and Cancer. In: Frank, D.A. (eds) Signal Transduction in Cancer. Cancer Treatment and Research, vol 115. Springer, Boston, MA. https://doi.org/10.1007/0-306-48158-8_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48158-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7340-3

  • Online ISBN: 978-0-306-48158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics