Skip to main content

Advertisement

Log in

The role of single nucleotide variant rs3819817 of the Histidine Ammonia-Lyase gene and 25-Hydroxyvitamin D on bone mineral density, adiposity markers, and skin pigmentation, in Mexican population

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Vitamin D (VD) deficiency and osteoporosis have become a global public health problem. A variant in the Histidine Ammonia-Lyase (HAL) gene has been associated with VD levels and bone mineral density (BMD). However, whether this variant has an influence on VD levels and BMD in Mexican adults remain unclear.

Methods

This cross-sectional analysis included 1,905 adults participating in the Health Worker Cohort Study and 164 indigenous postmenopausal women from the Metabolic Analysis in an Indigenous Sample (MAIS) cohort. The rs3819817 variant was genotyped by TaqMan probe assay. Total 25 hydroxyvitamin D levels were measured by DiaSorin Liaison. BMD at the different sites was assessed through dual-energy X-ray absorptiometry. Linear and logistic regression models were performed to evaluate the associations of interest.

Results

The prevalence of VD deficiency was 41%, showing differences between sexes. Obesity and skin pigmentation were associated with lower levels of VD in males and females. rs3819817-T allele was associated with low levels of 25-hydroxyvitamin D, VD deficiency, and hip and femoral neck BMD values (g/cm2). We found two interactions with VD levels, one between adiposity and rs3819817-T allele (P = 0.017) and another between skin pigmentation and rs3819817-T allele (P = 0.019). In indigenous postmenopausal women, we observed higher VD levels in the southern region compared to the northern region (P < 0.001); however, we did not observe differences by genotype.

Conclusion

Our findings confirm that the genetic variant rs3819817 has an essential function in VD levels and BMD and suggests a role in skin pigmentation in the Mexican population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available from the corresponding author, RV-C, upon reasonable request.

Code availability

Not applicable.

References

  1. Carlberg C (2022) Vitamin D and its target genes. Nutrients 14:1354. https://doi.org/10.3390/nu14071354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holick M (2007) Vitamina D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  3. Abboud M, Rybchyn MS, Rizk R et al (2017) Sunlight exposure is just one of the factors which influence vitamin D status. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol 16:302–313. https://doi.org/10.1039/c6pp00329j

    Article  CAS  Google Scholar 

  4. Batai K, Cui Z, Arora A et al (2021) Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency. PLoS Genet 17:e1009319. https://doi.org/10.1371/journal.pgen.1009319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Çolak Y, Afzal S, Nordestgaard BG (2020) 25-Hydroxyvitamin D and risk of osteoporotic fractures: mendelian randomization analysis in 2 large population-based cohorts. Clin Chem 66:676–685. https://doi.org/10.1093/clinchem/hvaa049

    Article  PubMed  Google Scholar 

  6. Backman JD, Li AH, Marcketta A et al (2021) Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599:628–634. https://doi.org/10.1038/s41586-021-04103-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barresi C, Stremnitzer C, Mlitz V et al (2011) Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J Invest Dermatol 131(1):188–194. https://doi.org/10.1038/jid.2010.231

    Article  CAS  PubMed  Google Scholar 

  8. Libon F, Cavalier E, Nikkels AF (2013) Skin color is relevant to vitamin D synthesis. Dermatology 227(3):250–254. https://doi.org/10.1159/000354750

    Article  CAS  PubMed  Google Scholar 

  9. Wolf ST, Dillon GA, Alexander LM et al (2022) Skin pigmentation is negatively associated with circulating vitamin D concentration and cutaneous microvascular endothelial function. Am J Physiol Heart Circ Physiol 323:490–498. https://doi.org/10.1152/ajpheart.00309.2022

    Article  CAS  PubMed  Google Scholar 

  10. Weishaar T, Rajan S (2015) Importance of body weight and skin color in determining appropriate vitamin D3 supplement doses for children and adolescents. Pediatr Res 77:370–375. https://doi.org/10.1038/pr.2014.190

    Article  CAS  PubMed  Google Scholar 

  11. Weishaar T, Vergili JM (2013) Vitamin D status is a biological determinant of health disparities. J Acad Nutr Diet 113:643–651. https://doi.org/10.1016/j.jand.2012.12.011

    Article  PubMed  Google Scholar 

  12. Drincic AT, Armas LAG, Van Diest EE, Heaney RP (2012) Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 20:1444–1448. https://doi.org/10.1038/oby.2011.404

    Article  CAS  PubMed  Google Scholar 

  13. Pereira-Santos M, Costa PRF, Assis AMO et al (2015) Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev 16:341–349. https://doi.org/10.1111/obr.12239

    Article  CAS  PubMed  Google Scholar 

  14. Denova-Gutiérrez E, Flores YN, Gallegos-Carrillo K, et al (2016) Health workers cohort study: methods and study design. Salud Publica Mex 58:708–716. https://doi.org/10.21149/spm.v58i6.8299

  15. Mendoza-Caamal EC, Barajas-Olmos F, Garciá-Ortiz H et al (2020) Metabolic syndrome in indigenous communities in Mexico: A descriptive and cross-sectional study. BMC Public Health. https://doi.org/10.1186/s12889-020-8378-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rivera-Paredez B, Hidalgo-Bravo A, de la Cruz-Montoya A et al (2020) Association between vitamin D deficiency and common variants of Vitamin D binding protein gene among Mexican Mestizo and indigenous postmenopausal women. J Endocrinol Invest 43:935–946. https://doi.org/10.1007/s40618-019-01177-5

    Article  CAS  PubMed  Google Scholar 

  17. Carrillo-Vega MF, García-Peña C, Gutiérrez-Robledo LM, Pérez-Zepeda MU (2017) Vitamin D deficiency in older adults and its associated factors: a cross-sectional analysis of the Mexican Health and Aging Study. Arch Osteoporos. https://doi.org/10.1007/s11657-016-0297-9

    Article  PubMed  Google Scholar 

  18. Rivera-Paredez B, Macías N, Martínez-Aguilar MM et al (2018) Association between vitamin D deficiency and single nucleotide polymorphisms in the vitamin D receptor and GC genes and analysis of their distribution in Mexican postmenopausal women. Nutrients. https://doi.org/10.3390/nu10091175

    Article  PubMed  PubMed Central  Google Scholar 

  19. WHO WHO Scientific group on the assessment of osteoporosis at primary health care level. http://www.who.int/chp/topics/Osteoporosis.pdf. Accessed 17 Mar 2018

  20. The International Society for Clinical Densitometry (2019) Indications for Bone Mineral Density (BMD) Testing. https://iscd.org/learn/official-positions/adult-positions/. Accessed 21 Feb 2023

  21. (1998) Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes Res 6 Suppl 2:51S–209S

  22. Who WHO (2011) Waist circumference and waist-hip ratio: report of a WHO expert consultation. World Health Organization, Geneva

    Google Scholar 

  23. Hernández-Avila M, Romieu I, Parra S et al (1998) Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 40:133–140. https://doi.org/10.1590/S0036-36341998000200005

    Article  PubMed  Google Scholar 

  24. Martínez-González MA, López-Fontana C, Varo JJ et al (2005) Validation of the Spanish version of the physical activity questionnaire used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr 8:920–927. https://doi.org/10.1079/phn2005745

    Article  PubMed  Google Scholar 

  25. Gauderman WJ (2002) Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol. https://doi.org/10.1093/aje/155.5.478

    Article  PubMed  Google Scholar 

  26. Holick MF (2014) Sunlight, ultraviolet radiation, vitamin D and skin cancer: how much sunlight do we need? Adv Exp Med Biol 810:1–16

    PubMed  Google Scholar 

  27. Castanedo-Cázares JP, Lepe V, Gordillo-Moscoso A, Moncada B (2003) Ultraviolet radiation doses in Mexican students. Salud Publica Mex 45:439–444

    Article  PubMed  Google Scholar 

  28. Flores A, Flores M, Macias N et al (2017) Vitamin D deficiency is common and is associated with overweight in Mexican children aged 1–11 years. Public Health Nutr. https://doi.org/10.1017/S1368980017000040

    Article  PubMed  Google Scholar 

  29. Contreras-Manzano A, Villalpando S, Robledo-Pérez R (2017) Vitamin D status by sociodemographic factors and body mass index in Mexican women at reproductive age. Salud Publica Mex https://doi.org/10.21149/8080

  30. Castanedo-Cázares JP, Torres-Álvarez B, Portales-González B et al (2016) Analysis of the cumulative solar ultraviolet radiation in Mexico. Rev Med Inst Mex Seguro Soc 54:26–31

    PubMed  Google Scholar 

  31. Barquera S, Hernández-Barrera L, Trejo-Valdivia B, et al (2020) Obesity in Mexico, prevalence andtrends in adults. Ensanut 2018–19. Salud Publica Mex 62:682–692. https://doi.org/10.21149/11630

  32. Landrier J-F, Marcotorchino J, Tourniaire F (2012) Lipophilic micronutrients and adipose tissue biology. Nutrients 4:1622–1649. https://doi.org/10.3390/nu4111622

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karampela I, Sakelliou A, Vallianou N et al (2021) Vitamin D and obesity: current evidence and controversies. Curr Obes Rep 10:162–180. https://doi.org/10.1007/s13679-021-00433-1

    Article  PubMed  Google Scholar 

  34. de Oliveira LF, de Azevedo LG, da Mota SJ et al (2020) Obesity and overweight decreases the effect of vitamin D supplementation in adults: systematic review and meta-analysis of randomized controlled trials. Rev Endocr Metab Disord 21:67–76. https://doi.org/10.1007/s11154-019-09527-7

    Article  CAS  PubMed  Google Scholar 

  35. Yao Y, Zhu L, He L et al (2015) A meta-analysis of the relationship between vitamin D deficiency and obesity. Int J Clin Exp Med 8:14977–14984

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kull M, Kallikorm R, Lember M (2009) Body mass index determines sunbathing habits: Implications on vitamin D levels. Intern Med J 39:256–258. https://doi.org/10.1111/j.1445-5994.2009.01900.x

    Article  CAS  PubMed  Google Scholar 

  37. Wortsman J, Matsuoka LY, Chen TC et al (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693. https://doi.org/10.1093/ajcn/72.3.690

    Article  CAS  PubMed  Google Scholar 

  38. Roizen JD, Long C, Casella A et al (2019) Obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. J bone Miner Res Off J Am Soc Bone Miner Res 34:1068–1073. https://doi.org/10.1002/jbmr.3686

    Article  CAS  Google Scholar 

  39. Bell NH, Epstein S, Greene A et al (1985) Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 76:370–373. https://doi.org/10.1172/JCI111971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lagunova Z, Porojnicu AC, Vieth R et al (2011) Serum 25-hydroxyvitamin D is a predictor of serum 1,25-dihydroxyvitamin D in overweight and obese patients. J Nutr 141:112–117. https://doi.org/10.3945/jn.109.119495

    Article  CAS  PubMed  Google Scholar 

  41. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Armas LAG, Dowell S, Akhter M et al (2007) Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: The effect of UVB dose and skin color. J Am Acad Dermatol 57:588–593. https://doi.org/10.1016/j.jaad.2007.03.004

    Article  PubMed  Google Scholar 

  43. Whiting SJ, Calvo MS, Vatanparast H (2017) Chapter 43 - Current understanding of vitamin D metabolism, nutritional status, and role in disease prevention. In: Coulston AM, Boushey CJ, Ferruzzi MG, Delahanty LMBT-N in the P and T of D (Fourth E (Eds). Academic Press, pp 937–967

  44. Nessvi S, Johansson L, Jopson J et al (2011) Association of 25-hydroxyvitamin D3)levels in adult New Zealanders with ethnicity, skin color and self-reported skin sensitivity to sun exposure. Photochem Photobiol 87:1173–1178. https://doi.org/10.1111/j.1751-1097.2011.00956.x

    Article  CAS  PubMed  Google Scholar 

  45. Manousaki D, Dudding T, Haworth S et al (2017) Low-frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. Am J Hum Genet 101:227–238. https://doi.org/10.1016/j.ajhg.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–1330. https://doi.org/10.1126/science.aaz1776

    Article  CAS  Google Scholar 

  47. Eckhart L, Schmidt M, Mildner M et al (2008) Histidase expression in human epidermal keratinocytes: regulation by differentiation status and all-trans retinoic acid. J Dermatol Sci 50:209–215. https://doi.org/10.1016/j.jdermsci.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  48. Welsh MM, Karagas MR, Applebaum KM et al (2008) A role for ultraviolet radiation immunosuppression in non-melanoma skin cancer as evidenced by gene-environment interactions. Carcinogenesis 29:1950–1954. https://doi.org/10.1093/carcin/bgn160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Landeck L, Jakasa I, Dapic I et al (2016) The effect of epidermal levels of urocanic acid on 25-hydroxyvitamin D synthesis and inflammatory mediators upon narrowband UVB irradiation. Photodermatol Photoimmunol Photomed 32:214–223. https://doi.org/10.1111/phpp.12249

    Article  CAS  PubMed  Google Scholar 

  50. Moro J, Tomé D, Schmidely P et al (2020) Histidine: a systematic review on metabolism and physiological effects in human and different animal species. Nutrients. https://doi.org/10.3390/nu12051414

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moreno-Estrada A, Gignoux CR, Fernández-López JC et al (2014) The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science (80-). https://doi.org/10.1126/science.1251688

    Article  Google Scholar 

  52. García-Ortiz H, Barajas-Olmos F, Contreras-Cubas C et al (2021) The genomic landscape of Mexican Indigenous populations brings insights into the peopling of the Americas. Nat Commun 12:5942. https://doi.org/10.1038/s41467-021-26188-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Romero-Hidalgo S, Ochoa-Leyva A, Garcíarrubio A et al (2017) Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing. Nat Commun 8:1005. https://doi.org/10.1038/s41467-017-01194-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sohail M, Chong AY, Quinto-Cortes CD et al (2022) Nationwide genomic biobank in Mexico unravels demographic history and complex trait architecture from 6057 individuals. bioRxiv. https://doi.org/10.1101/2022.07.11.499652

    Article  Google Scholar 

  55. Flores M, Barquera S, Sánchez LM, et al (2011) Concentraciones séricas de vitamina D en niños mexicanos. Resultados de la ENSANUT 2006. Inst Nac Salud Pública

Download references

Acknowledgements

We thank the staff and participants of the HWSC study for their important contribution. We also acknowledge the technical assistance provided by Jeny Flores-Morales (National Institute of Genomic Medicine, INMEGEN). In addition, the authors thank to the undergraduate students from the Biological Pharmaceutical Chemistry-UAM-X: Erica Mireya Mandujano Fernández and Mildred Carmona Santiago, for their participation in genotyping.

Funding

This project was partially supported by Consejo Nacional de Ciencia y Tecnología CF-2019-102962. The Health Workers Cohort Study was supported by: Consejo Nacional de Ciencia y Tecnología (Grant numbers: 7876, 87783, 262233, 26267 M, SALUD-2010-01-139796, SALUD-2011-01-161930, and CB-2013-01-221628).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Investigation: B.R.-P. and R.V.-C.; Writing- original draft preparation: B.R.-P., R.V.-C., and A.H.-B.; Data Analysis: B.R.-P.; Writing—review and editing: B.R.-P., A.H.-B., G.L-R., E.D.-G., F.B.-O., A.M.-H., L.O., J.S. and R.V.-C.; Resources; R.V.-C, E.D.-G. and J.S; Data Curation: E.D.-G, J.S., F.B.-O., A.M.-H., L.O.; Funding acquisition: R.V.-C and J.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. Velázquez-Cruz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The research was approved by the Instituto Mexicano del Seguro Social and Instituto Nacional de Medicina Genómica, according to the principles of the Declaration of Helsinki, in accordance with the relevant guidelines and ethical regulations in research involving human participants.

Informed consent

All participants in the study provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Paredez, B., Hidalgo-Bravo, A., León-Reyes, G. et al. The role of single nucleotide variant rs3819817 of the Histidine Ammonia-Lyase gene and 25-Hydroxyvitamin D on bone mineral density, adiposity markers, and skin pigmentation, in Mexican population. J Endocrinol Invest 46, 1911–1921 (2023). https://doi.org/10.1007/s40618-023-02051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02051-1

Keywords

Navigation