Skip to main content

Advertisement

Log in

Association between CYP2E1 C-1054T and 96-bp I/D genetic variations and the risk of polycystic ovary syndrome in Chinese women

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

To investigate the association of cytochrome P450 2E1 (CYP2E1) C-1054T (rs2031920) and 96-bp I/D genetic variations with the risk of polycystic ovary syndrome (PCOS), and to estimate the effects of genotypes on the clinical, metabolic, hormonal, and oxidative stress indicators.

Methods

This case–control study included 762 control women and 1034 patients with PCOS. Genotypes were determined using polymerase chain reaction and/or restriction fragment length polymorphism analysis. Clinical and biochemical parameters were also analyzed.

Results

Frequencies of the TT + CT genotype (35.4 vs. 28.9%) and T allele (19.6 vs. 16.0%) of the CYP2E1 C-1054T polymorphism were significantly higher in the PCOS group than in the control group (OR = 1.350, 95% CI 1.103–1.652, P = 0.004 for the dominant model). Genotype TT + CT remained a significant predictor of PCOS in a logistic regression model including age, body mass index (BMI), and recruitment year of participants (OR = 1.345, 95% CI 1.071–1.688, P = 0.011). No statistical differences were found in the genotype and allele frequencies of CYP2E1 96-bp I/D polymorphism. However, the combined genotype DD/TT + CT was related to an increased risk of PCOS when the DD/CC wild-type combined genotype was used as a reference. Patients with the I allele of 96-bp I/D polymorphism had a lower BMI but higher plasma apolipoprotein B and oxidized low-density lipoprotein cholesterol levels than those with the DD genotype.

Conclusion

CYP2E1 C-1054T, but not 96-bp I/D, genetic polymorphism is associated with an increased risk of PCOS in Chinese women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Raw data supporting the conclusions of this article will be made available from the corresponding author upon reasonable request.

References

  1. Kakoly NS, Khomami MB, Joham AE et al (2018) Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum Reprod Update 24:455–467. https://doi.org/10.1093/humupd/dmy007

    Article  CAS  Google Scholar 

  2. Escobar-Morreale HF (2018) Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 14:270–284. https://doi.org/10.1038/nrendo.2018.24

    Article  Google Scholar 

  3. Aversa A, La Vignera S, Rago R et al (2020) Fundamental concepts and novel aspects of polycystic ovarian syndrome: expert consensus resolutions. Front Endocrinol (Lausanne) 11:516. https://doi.org/10.3389/fendo.2020.00516

    Article  Google Scholar 

  4. Anagnostis P, Tarlatzis BC, Kauffman RP (2018) Polycystic ovarian syndrome (PCOS): long-term metabolic consequences. Metabolism 86:33–43. https://doi.org/10.1016/j.metabol.2017.09.016

    Article  CAS  Google Scholar 

  5. Zhang R, Liu H, Bai H et al (2017) Oxidative stress status in Chinese women with different clinical phenotypes of polycystic ovary syndrome. Clin Endocrinol (Oxf) 86:88–96. https://doi.org/10.1111/cen.13171

    Article  CAS  Google Scholar 

  6. Palomba S, de Wilde MA, Falbo A et al (2015) Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update 21:575–592. https://doi.org/10.1093/humupd/dmv029

    Article  Google Scholar 

  7. Dumesic DA, Lobo RA (2013) Cancer risk and PCOS. Steroids 78:782–785. https://doi.org/10.1016/j.steroids.2013.04.004

    Article  CAS  Google Scholar 

  8. Prabhu BN, Kanchamreddy SH, Sharma AR et al (2021) Conceptualization of functional single nucleotide polymorphisms of polycystic ovarian syndrome genes: an in silico approach. J Endocrinol Invest 44:1783–1793. https://doi.org/10.1007/s40618-021-01498-4

    Article  CAS  Google Scholar 

  9. Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37:467–520. https://doi.org/10.1210/er.2015-1104

    Article  CAS  Google Scholar 

  10. Merkin SS, Phy JL, Sites CK, Yang D (2016) Environmental determinants of polycystic ovary syndrome. Fertil Steril 106:16–24. https://doi.org/10.1016/j.fertnstert.2016.05.011

    Article  Google Scholar 

  11. Chen J, Jiang S, Wang J et al (2019) A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev 51:178–195. https://doi.org/10.1080/03602532.2019.1632889

    Article  CAS  Google Scholar 

  12. Trafalis DT, Panteli ES, Grivas A, Tsigris C, Karamanakos PN (2010) CYP2E1 and risk of chemically mediated cancers. Expert Opin Drug Metab Toxicol 6:307–319. https://doi.org/10.1517/17425250903540238

    Article  CAS  Google Scholar 

  13. Couto N, Al-Majdoub ZM, Achour B et al (2019) Quantification of proteins involved in drug metabolism and disposition in the human liver using label-free global proteomics. Mol Pharm 16:632–647. https://doi.org/10.1021/acs.molpharmaceut.8b00941

    Article  CAS  Google Scholar 

  14. French SW (2013) The importance of CYP2E1 in the pathogenesis of alcoholic liver disease and drug toxicity and the role of the proteasome. Subcell Biochem 67:145–164. https://doi.org/10.1007/978-94-007-5881-0_4

    Article  CAS  Google Scholar 

  15. Wang Y, Yang H, Li L et al (2010) Association between CYP2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer 46:758–764. https://doi.org/10.1016/j.ejca.2009.12.010

    Article  CAS  Google Scholar 

  16. Kathirvel E, Chen P, Morgan K, French SW, Morgan TR (2010) Oxidative stress and regulation of anti-oxidant enzymes in cytochrome P4502E1 transgenic mouse model of non-alcoholic fatty liver. J Gastroenterol Hepatol 25:1136–1143. https://doi.org/10.1111/j.1440-1746.2009.06196.x

    Article  CAS  Google Scholar 

  17. Nomura F, Itoga S, Uchimoto T et al (2003) Transcriptional activity of the tandem repeat polymorphism in the 5’-flanking region of the human CYP2E1 gene. Alcohol Clin Exp Res 27:42s-s46. https://doi.org/10.1097/01.Alc.0000078612.01626.96

    Article  CAS  Google Scholar 

  18. McCarver DG, Byun R, Hines RN, Hichme M, Wegenek W (1998) A genetic polymorphism in the regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. Toxicol Appl Pharmacol 152:276–281. https://doi.org/10.1006/taap.1998.8532

    Article  CAS  Google Scholar 

  19. Watanabe J, Hayashi S, Kawajiri K (1994) Different regulation and expression of the human CYP2E1 gene due to the RsaI polymorphism in the 5’-flanking region. J Biochem 116:321–326. https://doi.org/10.1093/oxfordjournals.jbchem.a124526

    Article  CAS  Google Scholar 

  20. Hayashi S, Watanabe J, Kawajiri K (1991) Genetic polymorphisms in the 5’-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 110:559–565. https://doi.org/10.1093/oxfordjournals.jbchem.a123619

    Article  CAS  Google Scholar 

  21. Silva TD, Felipe AV, Pimenta CA, Barão K, Forones NM (2012) CYP2E1 RsaI and 96-bp insertion genetic polymorphisms associated with risk for colorectal cancer. Genet Mol Res 11:3138–3145. https://doi.org/10.4238/2012.September.3.2

    Article  CAS  Google Scholar 

  22. Marchand LL, Wilkinson GR, Wilkens LR (1999) Genetic and dietary predictors of CYP2E1 activity: a phenotyping study in Hawaii Japanese using chlorzoxazone. Cancer Epidemiol Biomarkers Prev 8:495–500 PMID 10385138. http://cebp.aacrjournals.org/content/8/6/495

  23. Lucas D, Ménez C, Girre C et al (1995) Cytochrome P450 2E1 genotype and chlorzoxazone metabolism in healthy and alcoholic Caucasian subjects. Pharmacogenetics 5:298–304. https://doi.org/10.1097/00008571-199510000-00005

    Article  CAS  Google Scholar 

  24. Morita M, Le Marchand L, Kono S et al (2009) Genetic polymorphisms of CYP2E1 and risk of colorectal cancer: the Fukuoka colorectal cancer study. Cancer Epidemiol Biomarkers Prev 18:235–241. https://doi.org/10.1158/1055-9965.Epi-08-0698

    Article  CAS  Google Scholar 

  25. Zhang H, Li H, Yu H (2018) Analysis of the role of rs2031920 and rs3813867 polymorphisms within the cytochrome P450 2E1 gene in the risk of squamous cell carcinoma. Cancer Cell Int 18:67. https://doi.org/10.1186/s12935-018-0561-8

    Article  CAS  Google Scholar 

  26. Morita M, Tabata S, Tajima O et al (2008) Genetic polymorphisms of CYP2E1 and risk of colorectal adenomas in the Self Defense Forces Health Study. Cancer Epidemiol Biomarkers Prev 17:1800–1807. https://doi.org/10.1158/1055-9965.Epi-08-0314

    Article  CAS  Google Scholar 

  27. Richardson M, Kirkham J, Dwan K et al (2018) CYP genetic variants and toxicity related to anti-tubercular agents: a systematic review and meta-analysis. Syst Rev 7:204. https://doi.org/10.1186/s13643-018-0861-z

    Article  Google Scholar 

  28. Zhou B, Yang P, Gong YJ et al (2018) Effect modification of CPY2E1 and GSTZ1 genetic polymorphisms on associations between prenatal disinfection by-products exposure and birth outcomes. Environ Pollut 243:1126–1133. https://doi.org/10.1016/j.envpol.2018.09.083

    Article  CAS  Google Scholar 

  29. Jurewicz J, Majewska J, Berg A et al (2021) Serum bisphenol A analogues in women diagnosed with the polycystic ovary syndrome—is there an association? Environ Pollut 272:115962. https://doi.org/10.1016/j.envpol.2020.115962

    Article  CAS  Google Scholar 

  30. Yang Q, Zhao Y, Qiu X et al (2015) Association of serum levels of typical organic pollutants with polycystic ovary syndrome (PCOS): a case–control study. Hum Reprod 30:1964–1973. https://doi.org/10.1093/humrep/dev123

    Article  CAS  Google Scholar 

  31. Vagi SJ, Azziz-Baumgartner E, Sjodin A et al (2014) Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol A in polycystic ovary syndrome: a case-control study. BMC Endocr Disord 14:86. https://doi.org/10.1186/1472-6823-14-86

    Article  CAS  Google Scholar 

  32. Sun Y, Li S, Liu H et al (2021) Oxidative stress promotes hyperandrogenism by reducing sex hormone-binding globulin in polycystic ovary syndrome. Fertil Steril 116:1641–1650. https://doi.org/10.1016/j.fertnstert.2021.07.1203

    Article  CAS  Google Scholar 

  33. Sun Y, Li S, Liu H et al (2019) Association of GPx1 P198L and CAT C-262T genetic variations with polycystic ovary syndrome in Chinese women. Front Endocrinol (Lausanne) 10:771. https://doi.org/10.3389/fendo.2019.00771

    Article  Google Scholar 

  34. Zhang W, Lu D, Dong W et al (2011) Expression of CYP2E1 increases oxidative stress and induces apoptosis of cardiomyocytes in transgenic mice. Febs J 278:1484–1492. https://doi.org/10.1111/j.1742-4658.2011.08063.x

    Article  CAS  Google Scholar 

  35. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (2004). Fertil Steril 81:19-25. https://doi.org/10.1016/j.fertnstert.2003.10.004

  36. Teede HJ, Misso ML, Costello MF et al (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33:1602–1618. https://doi.org/10.1093/humrep/dey256

    Article  Google Scholar 

  37. Liu Q, Liu H, Bai H et al (2019) Association of SOD2 A16V and PON2 S311C polymorphisms with polycystic ovary syndrome in Chinese women. J Endocrinol Invest 42:909–921. https://doi.org/10.1007/s40618-018-0999-5

    Article  CAS  Google Scholar 

  38. Zhang J, Zhang Y, Liu H et al (2015) Antioxidant properties of high-density lipoproteins are impaired in women with polycystic ovary syndrome. Fertil Steril 103:1346–1354. https://doi.org/10.1016/j.fertnstert.2015.02.024

    Article  CAS  Google Scholar 

  39. Zhang J, Fan P, Liu H et al (2012) Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS. Hum Reprod 27:2484–2493. https://doi.org/10.1093/humrep/des191

    Article  CAS  Google Scholar 

  40. Fauser BC, Tarlatzis BC, Rebar RW et al (2012) Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 97:28-38.e25. https://doi.org/10.1016/j.fertnstert.2011.09.024

    Article  Google Scholar 

  41. Yuan XH, Fan YY, Yang CR et al (2016) Progesterone amplifies oxidative stress signal and promotes NO production via H2O2 in mouse kidney arterial endothelial cells. J Steroid Biochem Mol Biol 155:104–111. https://doi.org/10.1016/j.jsbmb.2015.09.029

    Article  CAS  Google Scholar 

  42. Wassmann K, Wassmann S, Nickenig G (2005) Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circ Res 97:1046–1054. https://doi.org/10.1161/01.Res.0000188212.57180.55

    Article  CAS  Google Scholar 

  43. Robert Y, Dubrulle F, Gaillandre L et al (1995) Ultrasound assessment of ovarian stroma hypertrophy in hyperandrogenism and ovulation disorders: visual analysis versus computerized quantification. Fertil Steril 64:307–312. https://doi.org/10.1016/S0015-0282(16)57728-0

    Article  CAS  Google Scholar 

  44. Higuchi R (1989) PCR technology. In: Erlich HA (ed) Principles and applications for DNA amplification, 1st edn. Stockton Press, New York, p 36

    Google Scholar 

  45. Wang W, Zhou W, Wu S et al (2019) Perfluoroalkyl substances exposure and risk of polycystic ovarian syndrome related infertility in Chinese women. Environ Pollut 247:824–831. https://doi.org/10.1016/j.envpol.2019.01.039

    Article  CAS  Google Scholar 

  46. Merlo E, Silva IV, Cardoso RC, Graceli JB (2018) The obesogen tributyltin induces features of polycystic ovary syndrome (PCOS): a review. J Toxicol Environ Health B Crit Rev 21:181–206. https://doi.org/10.1080/10937404.2018.1496214

    Article  CAS  Google Scholar 

  47. Hu Y, Wen S, Yuan D et al (2018) The association between the environmental endocrine disruptor bisphenol A and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol 34:370–377. https://doi.org/10.1080/09513590.2017.1405931

    Article  CAS  Google Scholar 

  48. Gonzalez F, Considine RV, Abdelhadi OA, Acton AJ (2019) Oxidative stress in response to saturated fat ingestion is linked to insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 104:5360–5371. https://doi.org/10.1210/jc.2019-00987

    Article  Google Scholar 

  49. Murri M, Luque-Ramirez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF (2013) Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 19:268–288. https://doi.org/10.1093/humupd/dms059

    Article  CAS  Google Scholar 

  50. Powell H, Kitteringham NR, Pirmohamed M, Smith DA, Park BK (1998) Expression of cytochrome P4502E1 in human liver: assessment by mRNA, genotype and phenotype. Pharmacogenetics 8:411–421. https://doi.org/10.1097/00008571-199810000-00006

    Article  CAS  Google Scholar 

  51. Kim RB, Yamazaki H, Chiba K et al (1996) In vivo and in vitro characterization of CYP2E1 activity in Japanese and Caucasians. J Pharmacol Exp Ther 279:4–11

    CAS  Google Scholar 

  52. Carrière V, Berthou F, Baird S et al (1996) Human cytochrome P450 2E1 (CYP2E1): from genotype to phenotype. Pharmacogenetics 6:203–211. https://doi.org/10.1097/00008571-199606000-00002

    Article  Google Scholar 

  53. Shahriary GM, Galehdari H, Jalali A et al (2012) CYP2E1*5B, CYP2E1*6, CYP2E1*7B, CYP2E1*2, and CYP2E1*3 allele frequencies in iranian populations. Asian Pac J Cancer Prev 13:6505–6510. https://doi.org/10.7314/apjcp.2012.13.12.6505

    Article  Google Scholar 

  54. Le Marchand L, Donlon T, Seifried A, Wilkens LR (2002) Red meat intake, CYP2E1 genetic polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 11:1019–24 PMID 12376502. http://cebp.aacrjournals.org/content/11/10/1019

  55. Zhuo X, Song J, Liao J et al (2016) Does CYP2E1 RsaI/PstI polymorphism confer head and neck carcinoma susceptibility?: a meta-analysis based on 43 studies. Medicine (Baltimore) 95:e5156. https://doi.org/10.1097/MD.0000000000005156

    Article  CAS  Google Scholar 

  56. Bose S, Tripathi DM, Sukriti et al (2013) Genetic polymorphisms of CYP2E1 and DNA repair genes HOGG1 and XRCC1: association with hepatitis B related advanced liver disease and cancer. Gene 519:231-7. https://doi.org/10.1016/j.gene.2013.02.025

  57. Yin X, Xiong W, Wang Y et al (2018) Association of CYP2E1 gene polymorphisms with bladder cancer risk: a systematic review and meta-analysis. Medicine (Baltimore) 97:e11910. https://doi.org/10.1097/MD.0000000000011910

    Article  CAS  Google Scholar 

  58. Fritsche E, Pittman GS, Bell DA (2000) Localization, sequence analysis, and ethnic distribution of a 96-bp insertion in the promoter of the human CYP2E1 gene. Mutat Res 432:1–5. https://doi.org/10.1016/s1383-5726(99)00009-6

    Article  CAS  Google Scholar 

  59. Laethem RM, Balazy M, Falck JR, Laethem CL, Koop DR (1993) Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1. J Biol Chem 268:12912–8 PMID 8509425. https://www.ncbi.nlm.nih.gov/pubmed/8509425

Download references

Acknowledgements

The authors would like to thank the women with or without PCOS who donated blood samples for this study. We would also like to thank You Li, Qi Song, Dehua Wan, Ying Wang, Feng Zhang, Jinxia Zhang, Yan Gong, Renjiao Zhang, Jun Tan, and Yujin Zhang for their support in this study.

Funding

This work was funded by the National Natural Science Foundation of China (81370681 and 61875249) and the Program for Chang Jiang Scholars and Innovative Research Team in the University, Ministry of Education (IRT0935).

Author information

Authors and Affiliations

Authors

Contributions

PF conceived and designed the experiments, analyzed the data, and revised the manuscript. YP performed the experiments and wrote the manuscript. QL conducted the experimental verification and helped with the research. HL and WH recruited and screened the patients. HB and MX assisted with the experiments and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to P. Fan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in this study were in accordance with the guidelines of the Declaration of Helsinki. This study was approved by the Institutional Review Board of West China Second University Hospital, Sichuan University (2014-014 to PF).

Informed consent

All participants provided written informed consent for their involvement in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Liu, Q., Liu, H. et al. Association between CYP2E1 C-1054T and 96-bp I/D genetic variations and the risk of polycystic ovary syndrome in Chinese women. J Endocrinol Invest 46, 67–78 (2023). https://doi.org/10.1007/s40618-022-01885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01885-5

Keywords

Navigation