Skip to main content

Advertisement

Log in

Direct effects of octreotide on osteoblast cell proliferation and function

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Octreotide (OCT) is a first-generation somatostatin analog (SSA) used in the treatment of acromegaly and neuroendocrine tumors (NETs). In both diseases, OCT interacts with somatostatin receptors 2 and 5 (SSTR2 and SSTR5), inhibiting hormone hypersecretion and cell proliferation. Skeletal health is an important clinical concern in acromegaly and NETs, since acromegalic osteopathy and NET bone metastasis occur in a remarkable number of patients. While OCT’s effect on NET and pituitary cells has been extensively investigated, its direct action on bone cells remains unknown.

Methods

Here, we investigated OCT direct effects on cell proliferation, differentiation, mineralization, and chemoattractant capacity of murine primary osteoblasts and osteoblast cell line MC3T3-E1.

Results

OCT inhibited osteoblasts and MC3T3-E1 cell proliferation (− 30 ± 16%, and − 22 ± 4%, both p < 0.05 vs control) and increased MC3T3-E1 cell apoptosis (+ 76 ± 32%, p < 0.05 vs control). The anti-proliferative action of OCT was mediated by SSTR2 and SSTR5 in MC3T3-E1, while its pro-apoptotic effect was abrogated in SSTR2-silenced cells. The analysis of genes related to the early and late phases of osteoblast differentiation showed that OCT did not affect Alp, Runx2, Bglap, Spp1, and Sost levels in MC3T3-E1 cells. Similarly, OCT did not affect ALP activity, mineralization, and osteoclastogenic induction. Finally, Vegfa expression decreased in OCT-treated MC3T3-E1 cells and OCT inhibited pancreatic NET cell migration toward the osteoblast-conditioned medium.

Conclusion

This study provides the first evidence of the direct action of OCT on osteoblasts which may have clinically relevant implications for the management of skeletal health in subjects with acromegaly and metastatic NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taboada GF, Luque RM, Neto LV et al (2008) Quantitative analysis of somatostatin receptor subtypes (1–5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur J Endocrinol 158:295–303. https://doi.org/10.1530/EJE-07-0562

    Article  CAS  PubMed  Google Scholar 

  2. Körner M, Eltschinger V, Waser B et al (2005) Value of immunohistochemistry for somatostatin receptor subtype sst2A in cancer tissues: lessons from the comparison of anti-sst2A antibodies with somatostatin receptor autoradiography. Am J Surg Pathol 29:1642–1651. https://doi.org/10.1097/01.pas.0000174013.14569.90

    Article  PubMed  Google Scholar 

  3. De Marinis L, Bianchi A, Mazziotti G et al (2008) The long-term cardiovascular outcome of different GH-lowering treatments in acromegaly. Pituitary 11:13–20. https://doi.org/10.1007/s11102-007-0062-6

    Article  CAS  PubMed  Google Scholar 

  4. Mazziotti G, Floriani I, Bonadonna S et al (2009) Effects of somatostatin analogs on glucose homeostasis: a metaanalysis of acromegaly studies. J Clin Endocrinol Metab 94:1500–1508. https://doi.org/10.1210/jc.2008-2332

    Article  CAS  PubMed  Google Scholar 

  5. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559. https://doi.org/10.1210/er.2007-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazziotti G, Lania AGA, Canalis E (2019) Bone disorders associated with acromegaly: mechanisms and treatment. Eur J Endocrinol 181:R45–R56. https://doi.org/10.1530/EJE-19-0184

    Article  CAS  PubMed  Google Scholar 

  7. Cellini M, Biamonte E, Mazza M et al (2021) Vertebral fractures associated with spinal sagittal imbalance and quality of life in acromegaly: a radiographic study with EOS 2D/3D technology. Neuroendocrinology 111:775–785. https://doi.org/10.1159/000511811

    Article  CAS  PubMed  Google Scholar 

  8. Belaya Z, Grebennikova T, Melnichenko G et al (2018) Effects of active acromegaly on bone mRNA and microRNA expression patterns. Eur J Endocrinol 178:353–364. https://doi.org/10.1530/EJE-17-0772

    Article  CAS  PubMed  Google Scholar 

  9. Dalle Carbonare L, Micheletti V, Cosaro E et al (2018) Bone histomorphometry in acromegaly patients with fragility vertebral fractures. Pituitary 21:56–64. https://doi.org/10.1007/s11102-017-0847-1

    Article  CAS  Google Scholar 

  10. Valenti MT, Mottes M, Cheri S et al (2018) Runx2 overexpression compromises bone quality in acromegalic patients. Endocr Relat Cancer 25:269–277. https://doi.org/10.1530/ERC-17-0523

    Article  CAS  PubMed  Google Scholar 

  11. Chiloiro S, Giampietro A, Frara S et al (2020) Effects of pegvisomant and pasireotide LAR on vertebral fractures in acromegaly resistant to first-generation SRLs. J Clin Endocrinol Metab 105:dgz054. https://doi.org/10.1210/clinem/dgz054

    Article  PubMed  Google Scholar 

  12. Cives M, Pellè E, Rinzivillo M et al (2021) Bone metastases in neuroendocrine tumors: molecular pathogenesis and implications in clinical practice. Neuroendocrinology 111:207–216. https://doi.org/10.1159/000508633

    Article  CAS  PubMed  Google Scholar 

  13. Ferrante E, Pellegrini C, Bondioni S et al (2006) Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2. Endocr Relat Cancer 13:955–962. https://doi.org/10.1677/erc.1.01191

    Article  CAS  PubMed  Google Scholar 

  14. Vitali E, Boemi I, Piccini S et al (2020) A novel insight into the anticancer mechanism of metformin in pancreatic neuroendocrine tumor cells. Mol Cell Endocrinol 509:110803. https://doi.org/10.1016/j.mce.2020.110803

    Article  CAS  PubMed  Google Scholar 

  15. Bruns C, Dietl MM, Palacios JM, Pless J (1990) Identification and characterization of somatostatin receptors in neonatal rat long bones. Biochem J 265:39–44. https://doi.org/10.1042/bj2650039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Öberg K, Lamberts SWJ (2016) Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: past, present and future. Endocr Relat Cancer 23:R551–R566. https://doi.org/10.1530/ERC-16-0151

    Article  PubMed  Google Scholar 

  17. Menale C, Robinson LJ, Palagano E et al (2019) Absence of dipeptidyl peptidase 3 increases oxidative stress and causes bone loss. J Bone Miner Res 34:2133–2148. https://doi.org/10.1002/jbmr.3829

    Article  CAS  PubMed  Google Scholar 

  18. Lania AG, Mantovani G, Ferrero S et al (2004) Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase A regulatory subunit 1A protein. Cancer Res 64:9193–9198. https://doi.org/10.1158/0008-5472.CAN-04-1847

    Article  CAS  PubMed  Google Scholar 

  19. Shen X, Wu C, Lei M et al (2021) Anti-tumor activity of a novel proteasome inhibitor D395 against multiple myeloma and its lower cardiotoxicity compared with carfilzomib. Cell Death Dis. https://doi.org/10.1038/s41419-021-03701-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84. https://doi.org/10.1016/j.ab.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  21. Huang W, Yang S, Shao J, Li YP (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092. https://doi.org/10.2741/2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schiavone ML, Millucci L, Bernardini G et al (2020) Homogentisic acid affects human osteoblastic functionality by oxidative stress and alteration of the Wnt/β-catenin signaling pathway. J Cell Physiol 235:6808–6816. https://doi.org/10.1002/jcp.29575

    Article  CAS  PubMed  Google Scholar 

  23. Giustina A, Karamouzis I, Patelli I, Mazziotti G (2013) Octreotide for acromegaly treatment: a reappraisal. Expert Opin Pharmacother 14:2433–2447. https://doi.org/10.1517/14656566.2013.847090

    Article  CAS  PubMed  Google Scholar 

  24. Katznelson L, Laws ER, Melmed S et al (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99:3933–3951. https://doi.org/10.1210/jc.2014-2700

    Article  CAS  PubMed  Google Scholar 

  25. Katznelson L, Atkinson JLD, Cook DM et al (2011) American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly–2011 update. Endocr Pract 17:1–44. https://doi.org/10.4158/EP.17.S4.1

    Article  PubMed  Google Scholar 

  26. Kunz PL, Reidy-Lagunes D, Anthony LB et al (2013) Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas 42:557–577. https://doi.org/10.1097/MPA.0b013e31828e34a4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weckbecker G, Lewis I, Albert R et al (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017. https://doi.org/10.1038/nrd1255

    Article  CAS  PubMed  Google Scholar 

  28. Vitali E, Cambiaghi V, Zerbi A et al (2016) Filamin-A is required to mediate SST2 effects in pancreatic neuroendocrine tumours. Endocr Relat Cancer 23:181–190. https://doi.org/10.1530/ERC-15-0358

    Article  CAS  PubMed  Google Scholar 

  29. Cheung NW, Boyages SC (1995) Somatostatin-14 and its analog octreotide exert a cytostatic effect on gh3 rat pituitary tumor cell proliferation via a transient g0/g1 cell cycle block. Endocrinology 136:4174–4181. https://doi.org/10.1210/endo.136.10.7664634

    Article  CAS  PubMed  Google Scholar 

  30. Treppiedi D, Giardino E, Catalano R et al (2019) Somatostatin analogs regulate tumor corticotrophs growth by reducing ERK1/2 activity. Mol Cell Endocrinol 483:31–38. https://doi.org/10.1016/j.mce.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  31. Cerovac V, Monteserin-Garcia J, Rubinfeld H et al (2010) The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res 70:666–674. https://doi.org/10.1158/0008-5472.CAN-09-2951

    Article  CAS  PubMed  Google Scholar 

  32. Sharma K, Patel YC, Srikant CB (1999) C-terminal region of human somatostatin receptor 5 is required for induction of Rb and G1 cell cycle arrest. Mol Endocrinol 13:82–90. https://doi.org/10.1210/mend.13.1.0220

    Article  CAS  PubMed  Google Scholar 

  33. Pagès P, Benali N, Saint-Laurent N et al (1999) sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1. J Biol Chem 274:15186–15193. https://doi.org/10.1074/jbc.274.21.15186

    Article  PubMed  Google Scholar 

  34. Maffei P, Dassie F, Wennberg A et al (2019) The endothelium in acromegaly. Front Endocrinol (Lausanne). 10:437. https://doi.org/10.3389/fendo.2019.00437

    Article  Google Scholar 

  35. Duran-Prado M, Morell M, Delgado-Maroto V et al (2013) Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ Res. 112:1444–1455. https://doi.org/10.1161/CIRCRESAHA.112.300695

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Zhou YB, Zhang GG et al (2010) Cortistatin attenuates vascular calcification in rats. Regul Pept. 159:35–43. https://doi.org/10.1016/j.regpep.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  37. Kavecansky J, Wei L, Caronia L et al (2015) Bone metastases in well-to-moderately differentiated neuroendocrine tumors: a single institutional review from the Ohio state university medical center. Pancreas 44:198–203. https://doi.org/10.1097/MPA.0000000000000267

    Article  CAS  PubMed  Google Scholar 

  38. Cives M, Rizzo F, Simone V et al (2016) Reviewing the osteotropism in neuroendocrine tumors: the role of epithelial-mesenchymal transition. Neuroendocrinology 103:321–334. https://doi.org/10.1159/000438902

    Article  CAS  PubMed  Google Scholar 

  39. Kan C, Vargas G, Le Pape F, Clézardin P (2016) Cancer cell colonisation in the bone microenvironment. Int J Mol Sci 17:1674. https://doi.org/10.3390/ijms17101674

    Article  PubMed Central  Google Scholar 

  40. Iguchi H, Yokota M, Fukutomi M et al (2002) A possible role of VEGF in osteolytic bone metastasis of hepatocellular Carcinoma. J Exp Clin Cancer Res 21:309–313

    CAS  PubMed  Google Scholar 

  41. Mazziotti G, Bianchi A, Porcelli T et al (2013) Vertebral fractures in patients with acromegaly: a 3-year prospective study. J Clin Endocrinol Metab 98:3402–3410. https://doi.org/10.1210/jc.2013-1460

    Article  CAS  PubMed  Google Scholar 

  42. Claessen KMJA, Kroon HM, Pereira AM et al (2013) Progression of vertebral fractures despite long-term biochemical control of acromegaly: a prospective follow-up study. J Clin Endocrinol Metab 98:4808–4815. https://doi.org/10.1210/jc.2013-2695

    Article  CAS  PubMed  Google Scholar 

  43. Malgo F, Hamdy NAT, Rabelink TJ et al (2017) Bone material strength index as measured by impact microindentation is altered in patients with acromegaly. Eur J Endocrinol 176:339–347. https://doi.org/10.1530/EJE-16-0808

    Article  CAS  PubMed  Google Scholar 

  44. Kužma M, Vaňuga P, Ságova I et al (2019) Non-invasive DXA-derived bone structure assessment of acromegaly patients: a cross-sectional study. Eur J Endocrinol 180:201–211. https://doi.org/10.1530/EJE-18-0881

    Article  PubMed  Google Scholar 

  45. Chiloiro S, Mazziotti G, Giampietro A et al (2018) Effects of pegvisomant and somatostatin receptor ligands on incidence of vertebral fractures in patients with acromegaly. Pituitary 21:302–308. https://doi.org/10.1007/s11102-018-0873-7

    Article  CAS  PubMed  Google Scholar 

  46. Mazziotti G, Frara S, Giustina A (2018) Pituitary diseases and bone. Endocr Rev 39:440–488. https://doi.org/10.1210/er.2018-00005

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been supported by Pfizer protocol No. ISR 56668477.

Author information

Authors and Affiliations

Authors

Contributions

EV, EP, CS, GM, and AL helped designing and conceiving the study. EV, EP, and MLS performed the experiments. EV, EP, MLS, and CS analyzed the data. EV prepared the main manuscript text. GM, CS, GM, and AL revised the paper.

Corresponding author

Correspondence to G. Mazziotti.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interests in this study.

Ethics approval

Animal procedures were performed in accordance with the ethical rules of the Institutional Animal Care and Use Committee of Humanitas Research Hospital in the framework of the protocol n.876/2017-PR. The murine primary cells generated in this circumstance were used for the present study in accordance with the Reduction guideline (3Rs) which is internationally recognized and encouraged.

Consent for publication

This work has been approved for publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, E., Palagano, E., Schiavone, M.L. et al. Direct effects of octreotide on osteoblast cell proliferation and function. J Endocrinol Invest 45, 1045–1057 (2022). https://doi.org/10.1007/s40618-022-01740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01740-7

Keywords

Navigation