Skip to main content

Advertisement

Log in

Human cell-based anti-inflammatory effects of rosiglitazone

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release.

Methods

Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking.

Results

In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release.

Conclusion

As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Xia C, Rao X, Zhong J (2017) Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res 2017:6494795. https://doi.org/10.1155/2017/6494795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sottili M, Cosmi L, Borgogni E, Sarchielli E, Maggi L, Francalanci M, Vannelli GB, Ronconi E, Adorini L, Annunziato F, Romagnani P, Serio M, Crescioli C (2009) Immunomodulatory effects of BXL-01-0029, a less hypercalcemic vitamin D analogue, in human cardiomyocytes and T cells. Exp Cell Res 315(2):264–273. https://doi.org/10.1016/j.yexcr.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  3. Sagrinati C, Sottili M, Mazzinghi B, Borgogni E, Adorini L, Serio M, Romagnani P, Crescioli C (2010) Comparison between VDR analogs and current immunosuppressive drugs in relation to CXCL10 secretion by human renal tubular cells. Transpl Int 23(9):914–923. https://doi.org/10.1111/j.1432-2277.2010.01078.x

    Article  CAS  PubMed  Google Scholar 

  4. Crescioli C, Squecco R, Cosmi L, Sottili M, Gelmini S, Borgogni E, Sarchielli E, Scolletta S, Francini F, Annunziato F, Vannelli GB, Serio M (2008) Immunosuppression in cardiac graft rejection: a human in vitro model to study the potential use of new immunomodulatory drugs. Exp Cell Res 314(6):1337–1350. https://doi.org/10.1016/j.yexcr.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  5. Altara R, Mallat Z, Booz GW, Zouein FA (2016) The CXCL10/CXCR3 axis and cardiac inflammation: implications for immunotherapy to treat infectious and noninfectious diseases of the heart. J Immunol Res 2016:4396368. https://doi.org/10.1155/2016/4396368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim HJ, Kang ES, Kim DJ, Kim SH, Ahn CW, Cha BS, Nam M, Chung CH, Lee KW, Nam CM, Lee HC (2007) Effects of rosiglitazone and metformin on inflammatory markers and adipokines: decrease in interleukin-18 is an independent factor for the improvement of homeostasis model assessment-beta in type 2 diabetes mellitus. Clin Endocrinol (Oxf) 66(2):282–289. https://doi.org/10.1111/j.1365-2265.2006.02723.x

    Article  CAS  Google Scholar 

  7. van Wijk JP, Cabezas MC, Coll B, Joven J, Rabelink TJ, de Koning EJ (2006) Effects of rosiglitazone on postprandial leukocytes and cytokines in type 2 diabetes. Atherosclerosis 186(1):152–159. https://doi.org/10.1016/j.atherosclerosis.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471. https://doi.org/10.1056/NEJMoa072761

    Article  CAS  PubMed  Google Scholar 

  9. American Diabetes Association (2020) Cardiovascular disease and risk management: standards of medical care in diabetes-2020. Diabetes Care 43(Suppl 1):S111–S134. https://doi.org/10.2337/dc20-S010

    Article  Google Scholar 

  10. Di Luigi L, Corinaldesi C, Colletti M, Scolletta S, Antinozzi C, Vannelli GB, Giannetta E, Gianfrilli D, Isidori AM, Migliaccio S, Poerio N, Fraziano M, Lenzi A, Crescioli C (2016) Phosphodiesterase type 5 inhibitor sildenafil decreases the proinflammatory chemokine CXCL10 in human cardiomyocytes and in subjects with diabetic cardiomyopathy. Inflammation 39(3):1238–1252. https://doi.org/10.1007/s10753-016-0359-6

    Article  CAS  PubMed  Google Scholar 

  11. Scolletta S, Buonamano A, Sottili M, Giomarelli P, Bonizella B, Vannelli GB, Serio M, Romagnani P, Crescioli C (2012) CXCL10 release in cardiopulmonary bypass: an in vivo and in vitro study. Biomed Aging Pathol 2(4):187–194. https://doi.org/10.1016/j.biomag.2011.07.001

    Article  CAS  Google Scholar 

  12. Giannattasio S, Corinaldesi C, Colletti M, Di Luigi L, Antinozzi C, Filardi T, Scolletta S, Basili S, Lenzi A, Morano S, Crescioli C (2019) The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence. J Endocrinol Invest 42(6):715–725. https://doi.org/10.1007/s40618-018-0977-y

    Article  CAS  PubMed  Google Scholar 

  13. Frangogiannis NG (2004) Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 53(11):585–595. https://doi.org/10.1007/s00011-004-1298-5

    Article  CAS  PubMed  Google Scholar 

  14. Birks EJ, Burton PB, Owen V, Mullen AJ, Hunt D, Banner NR, Barton PJ, Yacoub MH (2000) Elevated tumor necrosis factor-alpha and interleukin-6 in myocardium and serum of malfunctioning donor hearts. Circulation 102 (19 Suppl 3):III352–358. https://doi.org/10.1161/01.cir.102.suppl_3.iii-352

  15. Liotta F, Frosali F, Querci V, Mantei A, Fili L, Maggi L, Mazzinghi B, Angeli R, Ronconi E, Santarlasci V, Biagioli T, Lasagni L, Ballerini C, Parronchi P, Scheffold A, Cosmi L, Maggi E, Romagnani S, Annunziato F (2008) Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction. J Allergy Clin Immunol 121 (4):1000–1005 e1008. https://doi.org/10.1016/j.jaci.2008.01.004

  16. Borgogni E, Sarchielli E, Sottili M, Santarlasci V, Cosmi L, Gelmini S, Lombardi A, Cantini G, Perigli G, Luconi M, Vannelli GB, Annunziato F, Adorini L, Serio M, Crescioli C (2008) Elocalcitol inhibits inflammatory responses in human thyroid cells and T cells. Endocrinology 149(7):3626–3634. https://doi.org/10.1210/en.2008-0078

    Article  CAS  PubMed  Google Scholar 

  17. Crescioli C, Cosmi L, Borgogni E, Santarlasci V, Gelmini S, Sottili M, Sarchielli E, Mazzinghi B, Francalanci M, Pezzatini A, Perigli G, Vannelli GB, Annunziato F, Serio M (2007) Methimazole inhibits CXC chemokine ligand 10 secretion in human thyrocytes. J Endocrinol 195(1):145–155. https://doi.org/10.1677/JOE-07-0240

    Article  CAS  PubMed  Google Scholar 

  18. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S (2005) CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97(4):314–322. https://doi.org/10.1161/01.RES.0000177670.72216.9b

    Article  CAS  PubMed  Google Scholar 

  19. Malentacchi F, Vinci S, Della Melina A, Kuncova J, Villari D, Giannarini G, Nesi G, Selli C, Orlando C (2012) Splicing variants of carbonic anhydrase IX in bladder cancer and urine sediments. Urol Oncol 30(3):278–284. https://doi.org/10.1016/j.urolonc.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  20. Mannelli M, Ferruzzi P, Luciani P, Crescioli C, Buci L, Corona G, Serio M, Peri A (2003) Cushing’s syndrome in a patient with bilateral macronodular adrenal hyperplasia responding to cisapride: an in vivo and in vitro study. J Clin Endocrinol Metab 88(10):4616–4622. https://doi.org/10.1210/jc.2002-021949

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  22. Fang L, Zhang M, Li Y, Liu Y, Cui Q, Wang N (2016) PPARgene: a database of experimentally verified and computationally predicted PPAR target genes. PPAR Res 2016:6042162. https://doi.org/10.1155/2016/6042162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salomaa V, Havulinna A, Saarela O, Zeller T, Jousilahti P, Jula A, Muenzel T, Aromaa A, Evans A, Kuulasmaa K, Blankenberg S (2010) Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS ONE 5(4):e10100. https://doi.org/10.1371/journal.pone.0010100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, Rowe MW, Urdea MS, Xu XM, Hansen T, Pedersen O, Borch-Johnsen K (2009) Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 32(7):1207–1212. https://doi.org/10.2337/dc08-1935

    Article  PubMed  PubMed Central  Google Scholar 

  25. Herder C, Baumert J, Zierer A, Roden M, Meisinger C, Karakas M, Chambless L, Rathmann W, Peters A, Koenig W, Thorand B (2011) Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS ONE 6(6):e19852. https://doi.org/10.1371/journal.pone.0019852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herder C, Baumert J, Thorand B, Martin S, Lowel H, Kolb H, Koenig W (2006) Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol 26(9):2147–2152. https://doi.org/10.1161/01.ATV.0000235691.84430.86

    Article  CAS  PubMed  Google Scholar 

  27. Guest CB, Park MJ, Johnson DR, Freund GG (2008) The implication of proinflammatory cytokines in type 2 diabetes. Front Biosci 13:5187–5194. https://doi.org/10.2741/3074

    Article  CAS  PubMed  Google Scholar 

  28. Crescioli C, Sottili M, Bonini P, Cosmi L, Chiarugi P, Romagnani P, Vannelli GB, Colletti M, Isidori AM, Serio M, Lenzi A, Di Luigi L (2012) Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic target. Eur J Cell Biol 91(2):139–149. https://doi.org/10.1016/j.ejcb.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  29. Romagnani P, Crescioli C (2012) CXCL10: a candidate biomarker in transplantation. Clin Chim Acta 413(17–18):1364–1373. https://doi.org/10.1016/j.cca.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  30. Chang CC, Wu CL, Su WW, Shih KL, Tarng DC, Chou CT, Chen TY, Kor CT, Wu HM (2015) Interferon gamma-induced protein 10 is associated with insulin resistance and incident diabetes in patients with nonalcoholic fatty liver disease. Sci Rep 5:10096. https://doi.org/10.1038/srep10096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jain SK, Kahlon G, Morehead L, Lieblong B, Stapleton T, Hoeldtke R, Bass PF 3rd, Levine SN (2012) The effect of sleep apnea and insomnia on blood levels of leptin, insulin resistance, IP-10, and hydrogen sulfide in type 2 diabetic patients. Metab Syndr Relat Disord 10(5):331–336. https://doi.org/10.1089/met.2012.0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sajadi SM, Khoramdelazad H, Hassanshahi G, Rafatpanah H, Hosseini J, Mahmoodi M, Arababadi MK, Derakhshan R, Hasheminasabzavareh R, Hosseini-Zijoud SM, Ahmadi Z (2013) Plasma levels of CXCL1 (GRO-alpha) and CXCL10 (IP-10) are elevated in type 2 diabetic patients: evidence for the involvement of inflammation and angiogenesis/angiostasis in this disease state. Clin Lab 59(1–2):133–137. https://doi.org/10.7754/clin.lab.2012.120225

    Article  CAS  PubMed  Google Scholar 

  33. van den Borne P, Quax PH, Hoefer IE, Pasterkamp G (2014) The multifaceted functions of CXCL10 in cardiovascular disease. Biomed Res Int 2014:893106. https://doi.org/10.1155/2014/893106

    Article  PubMed  PubMed Central  Google Scholar 

  34. Szentes V, Gazdag M, Szokodi I, Dezsi CA (2018) The role of CXCR3 and associated chemokines in the development of atherosclerosis and during myocardial infarction. Front Immunol 9:1932. https://doi.org/10.3389/fimmu.2018.01932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altara R, Manca M, Hessel MH, Gu Y, van Vark LC, Akkerhuis KM, Staessen JA, Struijker-Boudier HA, Booz GW, Blankesteijn WM (2016) CXCL10 Is a circulating inflammatory marker in patients with advanced heart failure: a pilot study. J Cardiovasc Transl Res 9(4):302–314. https://doi.org/10.1007/s12265-016-9703-3

    Article  PubMed  Google Scholar 

  36. Bansal SS, Ismahil MA, Goel M, Patel B, Hamid T, Rokosh G, Prabhu SD (2017) Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ Heart Fail 10(3):e003688. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Filardi T, Ghinassi B, Di Baldassarre A, Tanzilli G, Morano S, Lenzi A, Basili S, Crescioli C (2019) Cardiomyopathy associated with diabetes: the central role of the cardiomyocyte. Int J Mol Sci 20 (13). https://doi.org/10.3390/ijms20133299

  38. Laroumanie F, Douin-Echinard V, Pozzo J, Lairez O, Tortosa F, Vinel C, Delage C, Calise D, Dutaur M, Parini A, Pizzinat N (2014) CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129(21):2111–2124. https://doi.org/10.1161/CIRCULATIONAHA.113.007101

    Article  CAS  PubMed  Google Scholar 

  39. Nevers T, Salvador AM, Grodecki-Pena A, Knapp A, Velazquez F, Aronovitz M, Kapur NK, Karas RH, Blanton RM, Alcaide P (2015) Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ Heart Fail 8(4):776–787. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S (2014) Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 115(1):55–67. https://doi.org/10.1161/CIRCRESAHA.115.303895

    Article  CAS  PubMed  Google Scholar 

  41. Mahmoud F, Al-Ozairi E (2013) Inflammatory cytokines and the risk of cardiovascular complications in type 2 diabetes. Dis Markers 35(4):235–241. https://doi.org/10.1155/2013/931915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Navarro JF, Mora C (2006) Diabetes, inflammation, proinflammatory cytokines, and diabetic nephropathy. Sci World J 6:908–917. https://doi.org/10.1100/tsw.2006.179

    Article  CAS  Google Scholar 

  43. Spanier JA, Tse HM, Horwitz MS, Fife BT (2019) Editorial: fresh ideas, foundational experiments: immunology and diabetes. Front Endocrinol (Lausanne) 10:315. https://doi.org/10.3389/fendo.2019.00315

    Article  Google Scholar 

  44. Virella G, Lopes-Virella MF (2014) The role of the immune system in the pathogenesis of diabetic complications. Front Endocrinol (Lausanne) 5:126. https://doi.org/10.3389/fendo.2014.00126

    Article  Google Scholar 

  45. Cantini G, Lombardi A, Borgogni E, Francalanci M, Ceni E, Degl’Innocenti S, Gelmini S, Poli G, Galli A, Serio M, Forti G, Luconi M (2010) Peroxisome-proliferator-activated receptor gamma (PPARgamma) is required for modulating endothelial inflammatory response through a nongenomic mechanism. Eur J Cell Biol 89(9):645–653. https://doi.org/10.1016/j.ejcb.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  46. Lombardi A, Cantini G, Piscitelli E, Gelmini S, Francalanci M, Mello T, Ceni E, Varano G, Forti G, Rotondi M, Galli A, Serio M, Luconi M (2008) A new mechanism involving ERK contributes to rosiglitazone inhibition of tumor necrosis factor-alpha and interferon-gamma inflammatory effects in human endothelial cells. Arterioscler Thromb Vasc Biol 28(4):718–724. https://doi.org/10.1161/ATVBAHA.107.160713

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Shen X (2019) Effect of rosiglitazone on inflammatory cytokines and oxidative stress after intensive insulin therapy in patients with newly diagnosed type 2 diabetes. Diabetol Metab Syndr 11:35. https://doi.org/10.1186/s13098-019-0432-z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27(3):813–823. https://doi.org/10.2337/diacare.27.3.813

    Article  PubMed  Google Scholar 

  49. Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC, Maedler K (2009) CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metab 9(2):125–139. https://doi.org/10.1016/j.cmet.2009.01.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Prof. Gabriella Barbara Vannelli for providing human fetal tissues. In memory of the beloved “Maestro” Prof. Mario Serio, ten years after his death.

Funding

PRIN 2015, PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE-Prot. 2015ZTT5KB (M.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Crescioli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in this study involving human subjects and human fetal tissues were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards; human fetal tissue use was approved by the committee for investigation in humans of the Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (protocol no. 6783–04).

Consent to participate

Written informed consent was obtained from all healthy blood donors e tissue donors.

Consent for publication

This work has been approved for publication by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sottili, M., Filardi, T., Cantini, G. et al. Human cell-based anti-inflammatory effects of rosiglitazone. J Endocrinol Invest 45, 105–114 (2022). https://doi.org/10.1007/s40618-021-01621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01621-5

Keywords

Navigation