Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660. https://doi.org/10.1038/45230
Article
PubMed
CAS
Google Scholar
Gnanapavan S, Kola B, Bustin SA et al (2002) The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 87:2988. https://doi.org/10.1210/jcem.87.6.8739
Article
PubMed
CAS
Google Scholar
Gutierrez JA, Solenberg PJ, Perkins DR et al (2008) Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 105:6320–6325. https://doi.org/10.1073/pnas.0800708105
Article
PubMed
PubMed Central
Google Scholar
Yang J, Brown MS, Liang G et al (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132:387–396. https://doi.org/10.1016/j.cell.2008.01.017
Article
PubMed
CAS
Google Scholar
Cummings DE, Purnell JQ, Frayo RS et al (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719
Article
CAS
Google Scholar
Müller TD, Nogueiras R, Andermann ML et al (2015) Molecular Metabolism. Ghrelin Mol Metab 4:437–460. https://doi.org/10.1016/j.molmet.2015.03.005
Article
PubMed
CAS
Google Scholar
Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913. https://doi.org/10.1038/35038090
Article
PubMed
Google Scholar
Broglio F, Arvat E, Benso A et al (2001) Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86:5083–5086. https://doi.org/10.1210/jcem.86.10.8098
Article
PubMed
CAS
Google Scholar
Chuang J-C, Sakata I, Kohno D et al (2011) Ghrelin directly stimulates glucagon secretion from pancreatic alpha-cells. Mol Endocrinol 25:1600–1611. https://doi.org/10.1210/me.2011-1001
Article
PubMed
PubMed Central
CAS
Google Scholar
Qader SS, Lundquist I, Ekelund M et al (2005) Ghrelin activates neuronal constitutive nitric oxide synthase in pancreatic islet cells while inhibiting insulin release and stimulating glucagon release. Regul Pept 128:51–56. https://doi.org/10.1016/j.regpep.2004.12.018
Article
PubMed
CAS
Google Scholar
Marzullo P, Verti B, Savia G et al (2004) The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J Clin Endocrinol Metab 89:936–939
Article
CAS
Google Scholar
St-Pierre DH, Karelis AD, Cianflone K et al (2004) Relationship between ghrelin and energy expenditure in healthy young women. J Clin Endocrinol Metab 89:5993–5997. https://doi.org/10.1210/jc.2004-0613
Article
PubMed
CAS
Google Scholar
Otto B, Cuntz U, Fruehauf E et al (2001) Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145:669–673. https://doi.org/10.1530/eje.0.1450669
Article
PubMed
CAS
Google Scholar
Tschöp M, Weyer C, Tataranni PA et al (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709
Article
Google Scholar
Takaya K, Ariyasu H, Kanamoto N et al (2000) Ghrelin strongly stimulates growth hormone (GH) release in humans. J Clin Endocrinol Metab 85:4908–4911. https://doi.org/10.1210/jcem.85.12.7167
Article
PubMed
CAS
Google Scholar
Kluge M, Schüssler P, Schmidt D et al (2012) Ghrelin suppresses secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in women. J Clin Endocrinol Metab 97:E448–E451. https://doi.org/10.1210/jc.2011-2607
Article
PubMed
CAS
Google Scholar
Sosić-Jurjević B, Stevanović D, Milosević V et al (2009) Central ghrelin affects pituitary-thyroid axis: histomorphological and hormonal study in rats. Neuroendocrinology 89:327–336. https://doi.org/10.1159/000188603
Article
PubMed
CAS
Google Scholar
Kluge M, Riedl S, Uhr M et al (2010) Ghrelin affects the hypothalamus-pituitary-thyroid axis in humans by increasing free thyroxine and decreasing TSH in plasma. Eur J Endocrinol 162:1059–1065. https://doi.org/10.1530/EJE-10-0094
Article
PubMed
CAS
Google Scholar
Silva JE (2006) Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86:435–464
Article
CAS
Google Scholar
Onur S, Haas V, Bosy-Westphal A et al (2005) L-tri-iodothyronine is a major determinant of resting energy expenditure in underweight patients with anorexia nervosa and during weight gain. Eur J Endocrinol 152:179–184. https://doi.org/10.1530/eje.1.01850
Article
PubMed
CAS
Google Scholar
Kim B (2008) Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18:141–144
Article
CAS
Google Scholar
Brent GA (1994) The molecular basis of thyroid hormone action. N Engl J Med 331:847–853
Article
CAS
Google Scholar
Luongo C, Dentice M, Salvatore D (2019) Deiodinases and their intricate role in thyroid hormone homeostasis. Nat Rev Endocrinol 15:479–488
Article
Google Scholar
Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89. https://doi.org/10.1210/edrv.23.1.0455
Article
PubMed
CAS
Google Scholar
Mele C, Samà MT, Bisoffi AA et al (2019) Circulating adipokines and metabolic setting in differentiated thyroid cancer. Endocr Connect. https://doi.org/10.1530/EC-19-0262
Article
PubMed
PubMed Central
Google Scholar
Ruchala M, Gurgul E, Stangierski A et al (2014) Individual plasma ghrelin changes in the same patients in hyperthyroid, hypothyroid and euthyroid state. Peptides 51:31–34. https://doi.org/10.1016/j.peptides.2013.10.018
Article
PubMed
CAS
Google Scholar
Kluge M, Schmidt D, Uhr M, Steiger A (2013) Ghrelin suppresses nocturnal secretion of luteinizing hormone (LH) and thyroid stimulating hormone (TSH) in patients with major depression. J Psychiatr Res 47:1236–1239. https://doi.org/10.1016/j.jpsychires.2013.05.010
Article
PubMed
Google Scholar
Loeffler M, Engel C, Ahnert P et al (2015) The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health 15:691. https://doi.org/10.1186/s12889-015-1983-z
Article
PubMed
PubMed Central
Google Scholar
Kußmaul T, Greiser KH, Haerting J et al (2014) Thyroid analytes TSH, FT3 and FT4 in serum of healthy elderly subjects as measured by the roche modular system: do we need age and gender dependent reference levels? Clin Lab 60:1551–1559. https://doi.org/10.7754/Clin.Lab.2014.130328
Article
PubMed
CAS
Google Scholar
Kratzsch J, Fiedler GM, Leichtle A et al (2005) New reference intervals for thyrotropin and thyroid hormones based on national academy of clinical biochemistry criteria and regular ultrasonography of the thyroid. Clin Chem 51:1480–1486. https://doi.org/10.1373/clinchem.2004.047399
Article
PubMed
CAS
Google Scholar
Koulouri O, Moran C, Halsall D et al (2013) Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab 27:745–762. https://doi.org/10.1016/j.beem.2013.10.003
Article
PubMed
PubMed Central
CAS
Google Scholar
Stockigt JR, Lim CF (2009) Medications that distort in vitro tests of thyroid function, with particular reference to estimates of serum free thyroxine. Best Pract Res Clin Endocrinol Metab 23:753–767
Article
CAS
Google Scholar
Warner MH, Beckett GJ (2010) Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol 205:1–13
Article
CAS
Google Scholar
Reiners C, Wegscheider K, Schicha H et al (2004) Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid 14:926–932. https://doi.org/10.1089/thy.2004.14.926
Article
PubMed
Google Scholar
Latza U, Hoffmann W, Terschüren C et al (2005) Rauchen als möglicher confounder in epidemiologischen studien: standardisierung der erhebung, quantifizierung und analyse. Das Gesundheitswes 67:795–802. https://doi.org/10.1055/s-2005-858807
Article
CAS
Google Scholar
Wittekind DA, Kratzsch J, Mergl R et al (2019) Higher fasting ghrelin serum levels in active smokers than in former and never-smokers. World J Biol Psychiatry. https://doi.org/10.1080/15622975.2019.1671610
Article
PubMed
Google Scholar
Wittekind DA, Kratzsch J, Mergl R et al (2018) Alcohol consumption is positively associated with fasting serum ghrelin in non-dependent adults: results from the population-based LIFE-Adult-Study. Psychoneuroendocrinology 97:143–148. https://doi.org/10.1016/j.psyneuen.2018.07.021
Article
PubMed
CAS
Google Scholar
Kokkinos A, Mourouzis I, Kyriaki D et al (2007) Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone. Endocrine 32:30–32. https://doi.org/10.1007/s12020-007-9002-5
Article
PubMed
CAS
Google Scholar
Chang Y-J, Hwu C-M, Yeh C-C et al (2014) Effects of subacute hypothyroidism on metabolism and growth-related molecules. Molecules 19:11178–11195. https://doi.org/10.3390/molecules190811178
Article
PubMed
PubMed Central
CAS
Google Scholar
Barington M, Brorson MM, Hofman-Bang J et al (2017) Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo. PLoS ONE 12:e0184992. https://doi.org/10.1371/journal.pone.0184992
Article
PubMed
PubMed Central
CAS
Google Scholar
Caminos JE, Seoane LM, Tovar SA et al (2002) Influence of thyroid status and growth hormone deficiency on ghrelin. Eur J Endocrinol 147:159–163. https://doi.org/10.1530/eje.0.1470159
Article
PubMed
CAS
Google Scholar
Kosowicz J, Baumann-Antczak A, Ruchaa M et al (2011) Thyroid hormones affect plasma ghrelin and obestatin levels. Horm Metab Res 43:121–125. https://doi.org/10.1055/s-0030-1269853
Article
PubMed
CAS
Google Scholar
Biyikli HH, Arduc A, Isik S, Ozuguz U, Caner S, Dogru F et al (2014) Assessing the relationship between serum ghrelin levels and metabolic parameters and autoimmunity in patients with euthyroid hashimoto’s thyroiditis. Endocr Pract 20:818–824. https://doi.org/10.4158/EP13469.OR
Article
PubMed
Google Scholar
Giménez-Palop O, Giménez-Pérez G, Mauricio D et al (2005) Circulating ghrelin in thyroid dysfunction is related to insulin resistance and not to hunger, food intake or anthropometric changes. Eur J Endocrinol 153:73–79. https://doi.org/10.1530/eje.1.01934
Article
PubMed
CAS
Google Scholar
Tanda ML, Lombardi V, Genovesi M et al (2009) Plasma total and acylated Ghrelin concentrations in patients with clinical and subclinical thyroid dysfunction. J Endocrinol Invest 32:74–78. https://doi.org/10.1007/BF03345683
Article
PubMed
CAS
Google Scholar
Ciuoli C, Brusco L, Theodoropoulou A et al (2011) Effects of acute recombinant human TSH on serum ghrelin levels. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2011.00094
Article
Google Scholar
Park YJ, Lee YJ, Kim SH et al (2008) Ghrelin enhances the proliferating effect of thyroid stimulating hormone in FRTL-5 thyroid cells. Mol Cell Endocrinol 285:19–25. https://doi.org/10.1016/j.mce.2008.01.003
Article
PubMed
CAS
Google Scholar
Benhadi N, Fliers E, Visser TJ et al (2010) Pilot study on the assessment of the setpoint of the hypothalamus- pituitary-thyroid axis in healthy volunteers. Eur J Endocrinol 162:323–329. https://doi.org/10.1530/EJE-09-0655
Article
PubMed
CAS
Google Scholar
Chen HY, Trumbauer ME, Chen AS et al (2004) Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 145:2607–2612. https://doi.org/10.1210/en.2003-1596
Article
PubMed
CAS
Google Scholar
Kamegai J, Tamura H, Shimizu T et al (2001) Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes 50:2438–2443
Article
CAS
Google Scholar
Fekete C, Lechan RM (2007) Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 28:97–114
Article
CAS
Google Scholar
Fekete C, Singru PS, Sanchez E et al (2006) Differential effects of central leptin, insulin, or glucose administration during fasting on the hypothalamic-pituitary-thyroid axis and feeding-related neurons in the arcuate nucleus. Endocrinology 147:520–529. https://doi.org/10.1210/en.2005-0956
Article
PubMed
CAS
Google Scholar
Gereben B, Zavacki AM, Ribich S et al (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29:898–938
Article
CAS
Google Scholar
Boelen A, Wiersinga WM, Fliers E (2008) Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18:123–129
Article
CAS
Google Scholar
Pilo A, Iervasi G, Vitek F et al (1990) Thyroidal and peripheral production of 3,5,3’-triiodothyronine in humans by multicompartmental analysis. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.1990.258.4.e715
Article
Google Scholar
Maia AL, Kim BW, Huang SA et al (2005) Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest 115:2524–2533. https://doi.org/10.1172/JCI25083
Article
PubMed
PubMed Central
CAS
Google Scholar
Bianco AC, Silva JE (1987) Nuclear 3,5,3‖-triiodothyronine (t3) in brown adipose tissue: receptor occupancy and sources of t3 as determined by in vivo techniques. Endocrinology 120:55–62. https://doi.org/10.1210/endo-120-1-55
Article
PubMed
CAS
Google Scholar
Koenig RJ (2005) Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid 15:835–840
Article
CAS
Google Scholar
Schneider MJ, Fiering SN, Thai B et al (2006) Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147:580–589. https://doi.org/10.1210/en.2005-0739
Article
PubMed
CAS
Google Scholar
Schneider MJ, Fiering SN, Pallud SE et al (2001) Targeted disruption of the type 2 selenodeiodinase gene (Dio2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15:2137–2148. https://doi.org/10.1210/mend.15.12.0740
Article
PubMed
CAS
Google Scholar
Galton VA, Schneider MJ, Clark AS, St. Germain DL (2009) Life without thyroxine to 3,5,3′-triiodothyronine conversion: studies in mice devoid of the 5′-deiodinases. Endocrinology 150:2957–2963. https://doi.org/10.1210/en.2008-1572
Article
PubMed
PubMed Central
CAS
Google Scholar
Chanoine JP, Braverman LE, Farwell AP et al (1993) The thyroid gland is a major source of circulating T3 in the rat. J Clin Invest 91:2709–2713. https://doi.org/10.1172/JCI116510
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen TT, Chapa F, Distefano JJ (1998) Direct measurement of the contributions of type I and type II 5’- deiodinases to whole body steady state 3,5,3’-triiodothyronine production from thyroxine in the rat. Endocrinology 139:4626–4633. https://doi.org/10.1210/endo.139.11.6323
Article
PubMed
CAS
Google Scholar
Docter R, Krenning EP, De Jong M, Hennemann G (1993) The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol (Oxf) 39:499–518
Article
CAS
Google Scholar
Lopresti JS, Gray D, Nicoloff JT (1991) Influence of fasting and refeeding on 3, 3′, 5′-triiodothyronine metabolism in man. J Clin Endocrinol Metab 72:130–136. https://doi.org/10.1210/jcem-72-1-130
Article
PubMed
CAS
Google Scholar
Cabanelas A, Lisboa PC, Moura EG, Pazos Moura CC (2006) Leptin acute modulation of the 5′-deiodinase activities in hypothalamus, pituitary and brown adipose tissue of fed rats. Horm Metab Res 38:481–485. https://doi.org/10.1055/s-2006-949527
Article
PubMed
CAS
Google Scholar
Basolo A, Begaye B, Hollstein T et al (2019) Effects of short-term fasting and different overfeeding diets on thyroid hormones in healthy humans. Thyroid 29:1209–1212. https://doi.org/10.1089/thy.2019.0237
Article
PubMed
PubMed Central
CAS
Google Scholar