Skip to main content
Log in

Climate and air pollution exposure are associated with thyroid function parameters: a retrospective cross-sectional study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objectives

There are still controversies about the impact of climatic and environmental factors on thyroid function parameters in healthy populations. We investigated the relationships between climate, air pollution exposure, and thyroid function fluctuations.

Methods

We retrospectively reviewed 327,913 individuals attending routine health checks from December 2013 to December 2018. We analyzed the associations between thyroid function and climatic factors using Spearman’s correlation analysis. We explored the relationships between thyroid function and air pollution exposure using multiple linear regression analysis, after adjusting for age, sex, season, and outdoor temperature. We also performed subgroup analyses by age and sex and sensitivity analyses of different anti-thyroid peroxidase antibody status.

Results

Thyroid-stimulating hormone (TSH) and free triiodothyronine (FT3) were negatively associated with outdoor temperature (r = − 0.66, P < 0.001; r = − 0.55, P < 0.001), while free thyroxine (FT4) and FT4/FT3 were positively associated with temperature (r = 0.35, P < 0.001; r = 0.79, P < 0.001). An increase of 10 μg/m3 in fine particulate matter ≤ 2.5 μm (PM2.5) was associated with a decrease of 0.12 pmol/L in FT4 and an increase of 0.07 pmol/L in FT3 (both P < 0.01). FT4/FT3 was significantly negatively associated with PM2.5 (coefficient: − 0.06, P < 0.01). These results remained robust in hierarchical analyses and sensitivity analyses.

Conclusions

Thyroid function parameters are associated with climate and air pollution exposure. These factors may influence variations in thyroid function. Our results also highlight the importance of public health interventions to reduce air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Data will be available if applied to the corresponding author.

Abbreviations

TSH:

Thyroid-stimulating hormone

FT3:

Free triiodothyronine

FT4:

Free thyroxine

TPOAb:

Anti-thyroid peroxidase antibody

PM2.5:

Fine particulate matter ≤ 2.5 μm

PM10:

Fine particulate matter ≤ 10 μm

SO2:

Sulfur dioxide

CO:

Carbon monoxide

NO2:

Nitrogen dioxide

O3_8h:

8-H mean ozone

CI:

Confidence interval

CV:

Coefficients of variation

References

  1. Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S (2017) Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 14(1):39–55. https://doi.org/10.1038/nrcardio.2016.174

    Article  CAS  PubMed  Google Scholar 

  2. Lin HY, Chin YT, Yang YC, Lai HY, Wang-Peng J, Liu LF, Tang HY, Davis PJ (2016) Thyroid hormone, cancer, and apoptosis. Compr Physiol 6(3):1221–1237. https://doi.org/10.1002/cphy.c150035

    Article  PubMed  Google Scholar 

  3. Wang D, Yu S, Ma C, Li H, Qiu L, Cheng X, Guo X, Yin Y, Li D, Wang Z, Hu Y, Lu S, Yang G, Liu H (2019) Reference intervals for thyroid-stimulating hormone, free thyroxine, and free triiodothyronine in elderly Chinese persons. Clin Chem Lab Med 57(7):1044–1052. https://doi.org/10.1515/cclm-2018-1099

    Article  CAS  PubMed  Google Scholar 

  4. Wang D, Cheng X, Yu S, Qiu L, Lian X, Guo X, Hu Y, Lu S, Yang G, Liu H (2018) Data mining: seasonal and temperature fluctuations in thyroid-stimulating hormone. Clin Biochem 60:59–63. https://doi.org/10.1016/j.clinbiochem.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  5. Yoshihara A, Noh JY, Watanabe N, Iwaku K, Kunii Y, Ohye H, Suzuki M, Matsumoto M, Suzuki N, Sugino K, Thienpont LM, Hishinuma A, Ito K (2018) Seasonal changes in serum thyrotropin concentrations observed from big data obtained during six consecutive years from 2010 to 2015 at a single hospital in Japan. Thyroid 28(4):429–436. https://doi.org/10.1089/thy.2017.0600

    Article  CAS  PubMed  Google Scholar 

  6. Mahwi TO, Abdulateef DS (2019) Relation of different components of climate with human pituitary-thyroid axis and FT3/FT4 ratio: a study on euthyroid and SCH subjects in two different seasons. Int J Endocrinol 2019:2762978

    Article  Google Scholar 

  7. Niu Y, Chen R, Kan H (2017) Air pollution, disease burden, and health economic loss in China. Adv Exp Med Biol 1017:233–242. https://doi.org/10.1007/978-981-10-5657-4_10

    Article  CAS  PubMed  Google Scholar 

  8. Combes A, Franchineau G (2019) Fine particle environmental pollution and cardiovascular diseases. Metabolism 100:153944. https://doi.org/10.1016/j.metabol.2019.07.008

    Article  CAS  Google Scholar 

  9. Kim JS, Chen Z, Alderete TL, Toledo-Corral C, Lurmann F, Berhane K, Gilliland FD (2019) Associations of air pollution, obesity and cardiometabolic health in young adults: the Meta-AIR study. Environ Int 133(Pt A):105180. https://doi.org/10.1016/j.envint.2019.105180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. An R, Ji M, Yan H (2005) Guan C (2018) Impact of ambient air pollution on obesity: a systematic review. Int J Obes 42(6):1112–1126. https://doi.org/10.1038/s41366-018-0089-y

    Article  CAS  Google Scholar 

  11. Zhao Y, Cao Z, Li H, Su X, Yang Y, Liu C, Hua J (2019) Air pollution exposure in association with maternal thyroid function during early pregnancy. J Hazard Mater 367:188–193. https://doi.org/10.1016/j.jhazmat.2018.12.078

    Article  CAS  PubMed  Google Scholar 

  12. Janssen BG, Saenen ND, Roels HA, Madhloum N, Gyselaers W, Lefebvre W, Penders J, Vanpoucke C, Vrijens K, Nawrot TS (2017) Fetal thyroid function, birth weight, and in utero exposure to fine particle air pollution: a birth cohort study. Environ Health Perspect 125(4):699–705. https://doi.org/10.1289/EHP508

    Article  CAS  PubMed  Google Scholar 

  13. van der Spoel E, Choi J, Roelfsema F, Cessie SL, van Heemst D, Dekkers OM (2019) Comparing methods for measurement error detection in serial 24-h hormonal data. J Biol Rhythms 34(4):347–363. https://doi.org/10.1177/0748730419850917

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10(2):486–489. https://doi.org/10.5812/ijem.3505

    Article  PubMed  PubMed Central  Google Scholar 

  15. Filis P, Hombach-Klonisch S, Ayotte P, Nagrath N, Soffientini U, Klonisch T, O’Shaughnessy P, Fowler PA (2018) Maternal smoking and high BMI disrupt thyroid gland development. BMC Med 16(1):194. https://doi.org/10.1186/s12916-018-1183-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang HB, Kuo PL, Chang JW, Jaakkola JJK, Liao KW, Huang PC (2018) Longitudinal assessment of prenatal phthalate exposure on serum and cord thyroid hormones homeostasis during pregnancy—Tainan birth cohort study (TBCS). Sci Total Environ 619–620:1058–1065. https://doi.org/10.1016/j.scitotenv.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Li D, Guo X, Yu S, Qiu L, Cheng X, Xu T, Li H, Liu H (2018) Effects of sex, age, sampling time, and season on thyroid-stimulating hormone concentrations: a retrospective study. Biochem Biophys Res Commun 506(3):450–454. https://doi.org/10.1016/j.bbrc.2018.10.099

    Article  CAS  PubMed  Google Scholar 

  18. Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, Bennett ST, Benvenga S (2015) Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid 25(8):954–961. https://doi.org/10.1089/thy.2014.0589

    Article  CAS  PubMed  Google Scholar 

  19. Lo Sasso B, Vidali M, Scazzone C, Agnello L, Ciaccio M (2019) Reference interval by the indirect approach of serum thyrotropin (TSH) in a Mediterranean adult population and the association with age and gender. Clin Chem Lab Med 57(10):1587–1594. https://doi.org/10.1515/cclm-2018-0957

    Article  CAS  PubMed  Google Scholar 

  20. Zhai X, Zhang L, Chen L, Lian X, Liu C, Shi B, Shi L, Tong N, Wang S, Weng J, Zhao J, Teng X, Yu X, Lai Y, Wang W, Li C, Mao J, Li Y, Fan C, Li L, Shan Z, Teng W (2018) An age-specific serum thyrotropin reference range for the diagnosis of thyroid diseases in older adults: a cross-sectional survey in China. Thyroid. https://doi.org/10.1089/thy.2017.0715

    Article  PubMed  Google Scholar 

  21. Strich D, Karavani G, Edri S, Gillis D (2016) TSH enhancement of FT4 to FT3 conversion is age dependent. Eur J Endocrinol 175(1):49–54. https://doi.org/10.1530/eje-16-0007

    Article  CAS  PubMed  Google Scholar 

  22. Vadiveloo T, Donnan PT, Murphy MJ, Leese GP (2013) Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab 98(3):1147–1153. https://doi.org/10.1210/jc.2012-3191

    Article  CAS  PubMed  Google Scholar 

  23. Santi D, Spaggiari G, Brigante G, Setti M, Tagliavini S, Trenti T, Simoni M (2019) Semi-annual seasonal pattern of serum thyrotropin in adults. Sci Rep 9(1):10786. https://doi.org/10.1038/s41598-019-47349-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tamai TK, Yoshimura T (2017) Molecular and neuroendocrine mechanisms of avian seasonal reproduction. Adv Exp Med Biol 1001:125–136. https://doi.org/10.1007/978-981-10-3975-1_8

    Article  CAS  PubMed  Google Scholar 

  25. Kim TH, Kim KW, Ahn HY, Choi HS, Won H, Choi Y, Cho SW, Moon JH, Yi KH, Park DJ, Park KS, Jang HC, Kim SY, Park YJ (2013) Effect of seasonal changes on the transition between subclinical hypothyroid and euthyroid status. J Clin Endocrinol Metab 98(8):3420–3429. https://doi.org/10.1210/jc.2013-1607

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Liu C, Zhang M, Han Y, Aase H, Villanger GD, Myhre O, Donkelaar AV, Martin RV, Baines EA, Chen R, Kan H, Xia Y (2019) Evaluation of maternal exposure to PM2.5 and its components on maternal and neonatal thyroid function and birth weight: a cohort study. Thyroid 29(8):1147–1157. https://doi.org/10.1089/thy.2018.0780

    Article  CAS  PubMed  Google Scholar 

  27. Chevrier J, Warner M, Gunier RB, Brambilla P, Eskenazi B, Mocarelli P (2014) Serum dioxin concentrations and thyroid hormone levels in the Seveso Women’s Health Study. Am J Epidemiol 180(5):490–498. https://doi.org/10.1093/aje/kwu160

    Article  PubMed  PubMed Central  Google Scholar 

  28. Croce L, De Martinis L, Pinto S, Coperchini F, Dito G, Bendotti G, Pasquali D, Cappelli C, Latrofa F, Magri F, Chiovato L, Rotondi M (2020) Compared with classic Hashimoto’s thyroiditis, chronic autoimmune serum-negative thyroiditis requires a lower substitution dose of l-thyroxine to correct hypothyroidism. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01249-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gruppen EG, Kootstra-Ros J, Kobold AM, Connelly MA, Touw D, Bos JHJ, Hak E, Links TP, Bakker SJL, Dullaart RPF (2019) Cigarette smoking is associated with higher thyroid hormone and lower TSH levels: the PREVEND study. Endocrine. https://doi.org/10.1007/s12020-019-02125-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boucai L, Surks MI (2009) Reference limits of serum TSH and free T4 are significantly influenced by race and age in an urban outpatient medical practice. Clin Endocrinol 70(5):788–793. https://doi.org/10.1111/j.1365-2265.2008.03390.x

    Article  Google Scholar 

  31. Yan YR, Liu Y, Huang H, Lv QG, Gao XL, Jiang J, Tong NW (2015) Iodine nutrition and thyroid diseases in Chengdu, China: an epidemiological study. QJM 108(5):379–385. https://doi.org/10.1093/qjmed/hcu216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks for the fund of the Sichuan Provincial Health Department (17PJ514), Sichuan Science and Technology Department (2018SZ0112 and 2020YFS0096), and the National Natural Science Foundation of China (81902142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Zhang or Z. An.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This study was approved by the Ethics Committee of West China Hospital, Sichuan University (Approval No: 101 (2019)).

Informed consent

No informed consent was required because the data were collected from the hospital information system for analysis retrospectively.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1657 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., He, H., Wang, X. et al. Climate and air pollution exposure are associated with thyroid function parameters: a retrospective cross-sectional study. J Endocrinol Invest 44, 1515–1523 (2021). https://doi.org/10.1007/s40618-020-01461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01461-9

Keywords

Navigation