Skip to main content
Log in

The genetic polymorphisms of XPR1 and SCL34A3 are associated with Fanconi syndrome in Chinese patients of tumor-induced osteomalacia

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Tumor-induced osteomalacia (TIO) is an acquired form of hypophosphatemia caused by tumors with excess production of fibroblast growth factor 23 (FGF23). Some reports showed that TIO patients had renal Fanconi syndrome (FS) with unidentified mechanism. In this study, we investigated the association between genetic polymorphisms of phosphate transporters in renal proximal tubules and TIO with FS.

Methods

We recruited 30 TIO patients with FS (TIO-FS) as well as 30 TIO patients (TIO-nonFS) without any urine abnormalities matched by age and gender. We collected clinical manifestations and conducted targeted sequencing of SLC34A1, SLC34A3 and XPR1 genes and the association analysis between variants in TIO with FS and phenotypes.

Results

TIO-FS group had lower levels of serum phosphate (0.44 ± 0.12 vs. 0.51 ± 0.07 mmol/L, p < 0.05) than TIO-nonFS group. Among the 16 SNPs in SLC34A1, SLC34A3 and XPR1 genes, GG/GC genotypes of rs148196667 in XPR1 and AA/TA genotypes of rs35535797 in SLC34A3 were associated with a reduced susceptibility to have FS. The G allele of rs148196667 in XPR1 decreased the risk of FS. The GGAA haplotype in SLC34A3 and GCT haplotype in XPR1 were associated with a decreased risk for FS.

Conclusions

The polymorphisms of XPR1 and SCL34A3 are associated with TIO patients with Fanconi syndrome. It provides novel insight to the relationship of phosphate transportation and general functions of renal proximal tubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, Collins MT (2017) Tumour-induced osteomalacia. Nat Rev Dis Primers 3:17044

    Article  Google Scholar 

  2. Econs MJ, Drezner MK (1994) Tumor-induced osteomalacia—unveiling a new hormone. N Engl J Med 330:1679–1681

    Article  CAS  Google Scholar 

  3. Jiang Y, Xia W, Xing X, Silva BC, Li M, Wang O, Zhang HB, Li F, Jing HL, Zhong DR, Jin J, Gao P, Zhou L, Qi F, Yu W, Bilezikian JP, Meng XW (2012) Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and review of the literature. J Bone Miner Res 27(9):1967–1975

    Article  Google Scholar 

  4. Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, Econs MJ, Inwards CY, Jan de Beur SM, Mentzel T, Montgomery E, Michal M, Miettinen M, Mills SE, Reith JD, O'Connell JX, Rosenberg AE, Rubin BP, Sweet DE, Vinh TN, Wold LE, Wehrli BM, White KE, Zaino RJ, Weiss SW (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30

    Article  Google Scholar 

  5. Yu W, He J, Fu W, Wang C, Zhang Z (2017) Reports of 17 Chinese patients with tumor-induced osteomalacia. J Bone Miner Metab 35:298–307

    Article  CAS  Google Scholar 

  6. Chong WH, Molinolo AA, Chen CC, Collins MT (2011) Tumor-induced osteomalacia. Endocr Relat Cancer 18(3):R53–77

    Article  CAS  Google Scholar 

  7. Norden AG, Laing RJ, Rowe P, Unwin RJ, Wrong O, Crisp AJ (2014) Oncogenic osteomalacia, raised FGF-23, and renal Fanconi syndrome. QJM 107:139–141

    Article  CAS  Google Scholar 

  8. Evans DJ, Azzopardi JG (1972) Distinctive tumours of bone and soft tissue causing acquired vitamin-D-resistant osteomalacia. Lancet 1:353–354

    Article  CAS  Google Scholar 

  9. Leehey DJ, Ing TS, Daugirdas JT (1985) Fanconi syndrome associated with a non-ossifying fibroma of bone. Am J Med 78:708–710

    Article  CAS  Google Scholar 

  10. Drezner MK, Feinglos MN (1977) Osteomalacia due to 1alpha, 25-dihydroxycholecalciferol deficiency. Association with a giant cell tumor of bone. J Clin Invest 60:1046–1053

    Article  CAS  Google Scholar 

  11. Clunie GP, Fox PE, Stamp TC (2000) Four cases of acquired hypophosphataemic (oncogenic) osteomalacia. Problems of diagnosis, treatment and long-term management. Rheumatology 39:1415–1421

    Article  CAS  Google Scholar 

  12. Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe JY, Zelikovic I, Skorecki K (2010) A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med 362:1102–1109

    Article  CAS  Google Scholar 

  13. Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R, Nikolaeva S, Haenzi B, Katanaeva N, Gautschi I, Katanaev V, Rotman S, Koesters R, Schild L, Pradervand S, Bonny O, Firsov D (2017) Renal Fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol 28:1073–1078

    Article  CAS  Google Scholar 

  14. Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2:309–310

    Article  CAS  Google Scholar 

  15. Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, Kassem M, Rackoff P, Zimering M, Dalkin A, Drobny E, Colussi G, Shaker JL, Hoogendoorn EH, Hui SL, Econs MJ (2006) Sensitivity of fibroblast growth factor 23 measurements in tumor-induced Osteomalacia. J Clin Endocrinol Metabol 91:2055–2061

    Article  CAS  Google Scholar 

  16. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    Article  Google Scholar 

  17. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  Google Scholar 

  18. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  Google Scholar 

  20. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, Valantin MA, Lechat P, Deray AG (2006) Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis 194:1481–1491

    Article  CAS  Google Scholar 

  21. Dahlin A, Wittwer M, de la Cruz M, Woo JM, Bam R, Scharen-Guivel V, Flaherty J, Ray AS, Cihlar T, Gupta SK, Giacomini KM (2015) A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet Genomics 25:82–92

    Article  CAS  Google Scholar 

  22. Prié D, Huart V, Bakouh N, Planelles G, Dellis O, Gérard B, Hulin P, Benqué-Blanchet F, Silve C, Grandchamp B, Friedlander G (2002) Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 347:983–991

    Article  Google Scholar 

  23. Fearn A, Allison B, Rice SJ, Edwards N, Halbritter J, Bourgeois S, Pastor-Arroyo EM, Hildebrandt F, Tasic V, Wagner CA, Hernando N, Sayer JA, Werner A (2018) Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations. Physiol Rep 6:e13715

    Article  Google Scholar 

  24. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaP(i)-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    Article  CAS  Google Scholar 

  25. Chi Y, Zhao Z, He X, Sun Y, Jiang Y, Li M, Wang O, Xing X, Sun AY, Zhou X, Meng X, Xia W (2014) A compound heterozygous mutation in SLC34A3 causes hereditary hypophosphatemic rickets with hypercalciuria in a Chinese patient. Bone 59:114–121

    Article  CAS  Google Scholar 

  26. Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep 3:1866–1873

    Article  CAS  Google Scholar 

  27. Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JR, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo Á, Castro-Fernández C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47:579–581

    Article  CAS  Google Scholar 

  28. Balani S, Perwad F (2019) Fibroblast growth factor 23 and phosphate homeostasis. Curr Opin Nephrol Hypertens 28:465–473

    Article  CAS  Google Scholar 

  29. Cho HY, Lee BH, Kang JH, Ha IS, Cheong HI, Choi Y (2005) A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 58:329–333

    Article  CAS  Google Scholar 

  30. Mühlbauer RC, Fleisch H (1991) Abnormal renal glucose handling in X-linked hypophosphataemic mice. Clin Sci (Lond) 80:71–76

    Article  Google Scholar 

  31. Park S, Kim WI, Cho DH, Kim YJ, Kim HS, Kim JH, Cha SK, Park KS, Lee JH, Lee SM, Lee EY (2017) Adefovir-induced Fanconi syndrome associated with osteomalacia. Clin Mol Hepatol 24:339–344

    Article  Google Scholar 

  32. Yin Z, Du J, Yu F, Xia W (2018) Tumor-induced osteomalacia. Osteoporos Sarcopenia 4:119–127

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by “13th Five-Year” National Science and Technology Major Project for New Drugs (No: 2019ZX09734001), the National Key R&D Program of China (2018YFA0800801), the National Natural Science Foundation of China (No. 81970757), the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (Nos. 2017PT32020, 2018PT32001) and the CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-3-003). We are grateful to thank all patients for their involvements in this study. We wish to thank Dr. Wen-ting Gui and Cai-hua Li (Genesky Biotechnologies Inc., Shanghai, China) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Jiang or W.-B. Xia.

Ethics declarations

Conflict of interest

All authors state that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of Ethics Committee of PUMCH and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, X., Feng, J. et al. The genetic polymorphisms of XPR1 and SCL34A3 are associated with Fanconi syndrome in Chinese patients of tumor-induced osteomalacia. J Endocrinol Invest 44, 773–780 (2021). https://doi.org/10.1007/s40618-020-01371-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01371-w

Keywords

Navigation