Skip to main content

Advertisement

Log in

Somatostatin receptor expression and patients’ response to targeted medical treatment in pituitary tumors: evidences and controversies

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Somatostatin receptors (SSTs) are widely co-expressed in pituitary tumors. SST2 and SST5 are the most represented SST subtypes. First-generation somatostatin receptor ligands (SRLs) mainly target SST2, while pasireotide, a multi-receptor ligand, shows high binding affinity for both SST5 and SST2. Therefore, SRLs are routinely used as medical treatment for GH-, TSH-, and ACTH-secreting pituitary tumors.

Methods

Critical revision of literature data correlating SST expression with patients’ response to SRLs.

Results

SST2 expression in somatroph tumors directly correlates with GH and IGF-1 decrease after first-generation SRL treatment. SST2 immunohistochemistry represents a valuable tool to predict biochemical response to first-generation SRLs in acromegalic patients. Pasireotide seems to exert its biological effects via SST2 in unselected patients. However, in those subjects resistant to first-generation SRLs, harbouring tumors with negligible SST2 expression, pasireotide can act throughout SST5. More than somatotroph tumors, TSH-omas represent the paradigm of tumors showing a satisfactory response to SRLs. This is probably due to the high SST2 expression observed in nearly 100% of cases, as well as to the balanced amount of SST5. In corticotroph tumors, pasireotide mainly act via SST5, although there is a need for translational studies correlating its efficacy with SST expression in this peculiar tumor histotype.

Conclusions

The assumption “more target receptor, more drug efficacy” is not straightforward for SRLs. The complex pathophysiology of SSTs, and the technical challenges faced to translate research findings into clinical practice, still need our full commitment to make receptor evaluation a worthwhile procedure for individualizing treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aflorei ED, Korbonits M (2014) Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 117(3):379–394. https://doi.org/10.1007/s11060-013-1354-5

    Article  PubMed  Google Scholar 

  2. Cuny T, Barlier A, Feelders R, Weryha G, Hofland LJ, Ferone D, Gatto F (2015) Medical therapies in pituitary adenomas: Current rationale for the use and future perspectives. Ann Endocrinol (Paris) 76(1):43–58. https://doi.org/10.1016/j.ando.2014.10.002

    Article  Google Scholar 

  3. Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V, Trouillas J, Dekkers OM, European Society of E (2018) European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178(1):G1–G24. https://doi.org/10.1530/EJE-17-0796

    Article  CAS  PubMed  Google Scholar 

  4. Serban AL, Del Sindaco G, Sala E, Carosi G, Indirli R, Rodari G, Giavoli C, Locatelli M, Carrabba G, Bertani G, Marfia G, Mantovani G, Arosio M, Ferrante E (2019) Determinants of outcome of transsphenoidal surgery for Cushing disease in a single-centre series. J Endocrinol Investig. https://doi.org/10.1007/s40618-019-01151-1

    Article  Google Scholar 

  5. Beck-Peccoz P, Giavoli C, Lania A (2019) A 2019 update on TSH-secreting pituitary adenomas. J Endocrinol Investig 42(12):1401–1406. https://doi.org/10.1007/s40618-019-01066-x

    Article  CAS  Google Scholar 

  6. Melmed S, Bronstein MD, Chanson P, Klibanski A, Casanueva FF, Wass JAH, Strasburger CJ, Luger A, Clemmons DR, Giustina A (2018) A consensus statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol 14(9):552–561. https://doi.org/10.1038/s41574-018-0058-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gatto F, Hofland LJ (2011) The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr Relat Cancer 18(6):R233–251. https://doi.org/10.1530/ERC-10-0334

    Article  CAS  PubMed  Google Scholar 

  8. Ferone D, Gatto F, Arvigo M, Resmini E, Boschetti M, Teti C, Esposito D, Minuto F (2009) The clinical-molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J Mol Endocrinol 42(5):361–370. https://doi.org/10.1677/JME-08-0162

    Article  CAS  PubMed  Google Scholar 

  9. Chinezu L, Vasiljevic A, Jouanneau E, Francois P, Borda A, Trouillas J, Raverot G (2014) Expression of somatostatin receptors, SSTR2A and SSTR5, in 108 endocrine pituitary tumors using immunohistochemical detection with new specific monoclonal antibodies. Hum Pathol 45(1):71–77. https://doi.org/10.1016/j.humpath.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Reubi JC, Schaer JC, Waser B, Mengod G (1994) Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res 54(13):3455–3459

    CAS  PubMed  Google Scholar 

  11. Greenman Y, Melmed S (1994) Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J Clin Endocrinol Metab 79(3):724–729. https://doi.org/10.1210/jcem.79.3.7521350

    Article  CAS  PubMed  Google Scholar 

  12. Fougner SL, Borota OC, Berg JP, Hald JK, Ramm-Pettersen J, Bollerslev J (2008) The clinical response to somatostatin analogues in acromegaly correlates to the somatostatin receptor subtype 2a protein expression of the adenoma. Clin Endocrinol (Oxf) 68(3):458–465. https://doi.org/10.1111/j.1365-2265.2007.03065.x

    Article  CAS  Google Scholar 

  13. Wildemberg LE, Neto LV, Costa DF, Nasciuti LE, Takiya CM, Alves LM, Rebora A, Minuto F, Ferone D, Gadelha MR (2013) Low somatostatin receptor subtype 2, but not dopamine receptor subtype 2 expression predicts the lack of biochemical response of somatotropinomas to treatment with somatostatin analogs. J Endocrinol Investig 36(1):38–43. https://doi.org/10.3275/8305

    Article  CAS  Google Scholar 

  14. Casar-Borota O, Heck A, Schulz S, Nesland JM, Ramm-Pettersen J, Lekva T, Alafuzoff I, Bollerslev J (2013) Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies was reduced by octreotide and correlated with the acute and long-term effects of octreotide. J Clin Endocrinol Metab 98(11):E1730–E1739. https://doi.org/10.1210/Jc.2013-2145

    Article  CAS  PubMed  Google Scholar 

  15. Hofland LJ, Lamberts SW (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24(1):28–47

    Article  CAS  PubMed  Google Scholar 

  16. Taboada GF, Luque RM, Bastos W, Guimaraes RF, Marcondes JB, Chimelli LM, Fontes R, Mata PJ, Filho PN, Carvalho DP, Kineman RD, Gadelha MR (2007) Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol 156(1):65–74. https://doi.org/10.1530/eje.1.02313

    Article  CAS  PubMed  Google Scholar 

  17. Cuevas-Ramos D, Fleseriu M (2014) Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol 52(3):R223–240. https://doi.org/10.1530/JME-14-0011

    Article  CAS  PubMed  Google Scholar 

  18. Gatto F, Feelders RA, van der Pas R, Kros JM, Waaijers M, Sprij-Mooij D, Neggers SJ, van der Lelij AJ, Minuto F, Lamberts SW, de Herder WW, Ferone D, Hofland LJ (2013) Immunoreactivity score using an anti-sst2A receptor monoclonal antibody strongly predicts the biochemical response to adjuvant treatment with somatostatin analogs in acromegaly. J Clin Endocrinol Metab 98(1):E66–71. https://doi.org/10.1210/jc.2012-2609

    Article  CAS  PubMed  Google Scholar 

  19. Yoshihara A, Isozaki O, Hizuka N, Nozoe Y, Harada C, Ono M, Kawamata T, Kubo O, Hori T, Takano K (2007) Expression of type 5 somatostatin receptor in TSH-secreting pituitary adenomas: a possible marker for predicting long-term response to octreotide therapy. Endocr J 54(1):133–138

    Article  CAS  PubMed  Google Scholar 

  20. Gatto F, Barbieri F, Gatti M, Wurth R, Schulz S, Ravetti JL, Zona G, Culler MD, Saveanu A, Giusti M, Minuto F, Hofland LJ, Ferone D, Florio T (2012) Balance between somatostatin and D2 receptor expression drives TSH-secreting adenoma response to somatostatin analogues and dopastatins. Clin Endocrinol (Oxf) 76(3):407–414. https://doi.org/10.1111/j.1365-2265.2011.04200.x

    Article  CAS  Google Scholar 

  21. van der Pas R, Feelders RA, Gatto F, de Bruin C, Pereira AM, van Koetsveld PM, Sprij-Mooij DM, Waaijers AM, Dogan F, Schulz S, Kros JM, Lamberts SW, Hofland LJ (2013) Preoperative normalization of cortisol levels in Cushing's disease after medical treatment: consequences for somatostatin and dopamine receptor subtype expression and in vitro response to somatostatin analogs and dopamine agonists. J Clin Endocrinol Metab 98(12):E1880–1890. https://doi.org/10.1210/jc.2013-1987

    Article  CAS  PubMed  Google Scholar 

  22. Batista DL, Zhang X, Gejman R, Ansell PJ, Zhou Y, Johnson SA, Swearingen B, Hedley-Whyte ET, Stratakis CA, Klibanski A (2006) The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J Clin Endocrinol Metab 91(11):4482–4488. https://doi.org/10.1210/jc.2006-1245

    Article  CAS  PubMed  Google Scholar 

  23. van der Hoek J, Waaijers M, van Koetsveld PM, Sprij-Mooij D, Feelders RA, Schmid HA, Schoeffter P, Hoyer D, Cervia D, Taylor JE, Culler MD, Lamberts SW, Hofland LJ (2005) Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 289(2):E278–287. https://doi.org/10.1152/ajpendo.00004.2005

    Article  CAS  PubMed  Google Scholar 

  24. Jaquet P, Ouafik L, Saveanu A, Gunz G, Fina F, Dufour H, Culler MD, Moreau JP, Enjalbert A (1999) Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas. J Clin Endocrinol Metab 84(9):3268–3276

    CAS  PubMed  Google Scholar 

  25. Zatelli MC, Piccin D, Bottoni A, Ambrosio MR, Margutti A, Padovani R, Scanarini M, Taylor JE, Culler MD, Cavazzinidegli Uberti LEC (2004) Evidence for differential effects of selective somatostatin receptor subtype agonists on alpha-subunit and chromogranin a secretion and on cell viability in human nonfunctioning pituitary adenomas in vitro. J Clin Endocrinol Metab 89(10):5181–5188. https://doi.org/10.1210/jc.2003-031954

    Article  CAS  PubMed  Google Scholar 

  26. Ferriere A, Tabarin A (2020) Cushing's syndrome: treatment and new therapeutic approaches. Best Pract Res Clin Endocrinol Metab. https://doi.org/10.1016/j.beem.2020.101381

    Article  PubMed  Google Scholar 

  27. Puig-Domingo M, Marazuela M (2019) Precision medicine in the treatment of acromegaly. Minerva Endocrinol 44(2):169–175. https://doi.org/10.23736/S0391-1977.18.02937-1

    Article  PubMed  Google Scholar 

  28. Trouillas J, Vasiljevic A, Lapoirie M, Chinezu L, Jouanneau E, Raverot G (2019) Pathological markers of somatotroph pituitary neuroendocrine tumors predicting the response to medical treatment. Minerva Endocrinol 44(2):129–136. https://doi.org/10.23736/S0391-1977.18.02933-4

    Article  PubMed  Google Scholar 

  29. Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless T (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31(11):1133–1140. https://doi.org/10.1016/0024-3205(82)90087-x

    Article  CAS  PubMed  Google Scholar 

  30. Kuhn JM, Basin C, Mollard M, de Rouge B, Baudoin C, Obach R, Tolis G (1993) Pharmacokinetic study and effects on growth hormone secretion in healthy volunteers of the new somatostatin analogue BIM 23014. Eur J Clin Pharmacol 45(1):73–77. https://doi.org/10.1007/bf00315353

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Shlomo A, Melmed S (2008) Somatostatin agonists for treatment of acromegaly. Mol Cell Endocrinol 286(1–2):192–198. https://doi.org/10.1016/j.mce.2007.11.024

    Article  CAS  PubMed  Google Scholar 

  32. Gadelha MR, Wildemberg LE, Bronstein MD, Gatto F, Ferone D (2017) Somatostatin receptor ligands in the treatment of acromegaly. Pituitary 20(1):100–108. https://doi.org/10.1007/s11102-017-0791-0

    Article  CAS  PubMed  Google Scholar 

  33. Oberg K, Lamberts SW (2016) Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: past, present and future. Endocr Relat Cancer 23(12):R551–R566. https://doi.org/10.1530/ERC-16-0151

    Article  PubMed  Google Scholar 

  34. Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 146(5):707–716. https://doi.org/10.1530/eje.0.1460707

    Article  CAS  PubMed  Google Scholar 

  35. Boerlin V, van der Hoek J, Beglinger C, Poon KW, Hartmann S, Dutreix C, Kovarik JM, Bruns C, Weckbecker G, Lewis I, Schnieper P, Hofland LJ, Lamberts SW (2003) New insights on SOM230, a universal somatostatin receptor ligand. J Endocrinol Investig 26(8 Suppl):14–16

    CAS  Google Scholar 

  36. Cescato R, Loesch KA, Waser B, Macke HR, Rivier JE, Reubi JC, Schonbrunn A (2010) Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways. Mol Endocrinol 24(1):240–249. https://doi.org/10.1210/me.2009-0321

    Article  CAS  PubMed  Google Scholar 

  37. Lesche S, Lehmann D, Nagel F, Schmid HA, Schulz S (2009) Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J Clin Endocrinol Metab 94(2):654–661. https://doi.org/10.1210/jc.2008-1919

    Article  CAS  PubMed  Google Scholar 

  38. Gatto F, Arvigo M, Amaru J, Campana C, Cocchiara F, Graziani G, Bruzzone E, Giusti M, Boschetti M, Ferone D (2019) Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells. Pituitary 22(1):89–99. https://doi.org/10.1007/s11102-018-0926-y

    Article  CAS  PubMed  Google Scholar 

  39. Jaquet P, Saveanu A, Gunz G, Fina F, Zamora AJ, Grino M, Culler MD, Moreau JP, Enjalbert A, Ouafik LH (2000) Human somatostatin receptor subtypes in acromegaly: distinct patterns of messenger ribonucleic acid expression and hormone suppression identify different tumoral phenotypes. J Clin Endocrinol Metab 85(2):781–792

    CAS  PubMed  Google Scholar 

  40. Hofland LJ, van der Hoek J, van Koetsveld PM, de Herder WW, Waaijers M, Sprij-Mooij D, Bruns C, Weckbecker G, Feelders R, van der Lely AJ, Beckers A, Lamberts SW (2004) The novel somatostatin analog SOM230 is a potent inhibitor of hormone release by growth hormone- and prolactin-secreting pituitary adenomas in vitro. J Clin Endocrinol Metab 89(4):1577–1585. https://doi.org/10.1210/jc.2003-031344

    Article  CAS  PubMed  Google Scholar 

  41. Taboada GF, Luque RM, Neto LV, Machado Ede O, Sbaffi BC, Domingues RC, Marcondes JB, Chimelli LM, Fontes R, Niemeyer P, de Carvalho DP, Kineman RD, Gadelha MR (2008) Quantitative analysis of somatostatin receptor subtypes (1–5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur J Endocrinol 158(3):295–303. https://doi.org/10.1530/EJE-07-0562

    Article  CAS  PubMed  Google Scholar 

  42. Korner M, Waser B, Schonbrunn A, Perren A, Reubi JC (2012) Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol 36(2):242–252. https://doi.org/10.1097/PAS.0b013e31823d07f3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fischer T, Doll C, Jacobs S, Kolodziej A, Stumm R, Schulz S (2008) Reassessment of sst2 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-1. J Clin Endocrinol Metab 93(11):4519–4524. https://doi.org/10.1210/jc.2008-1063

    Article  CAS  PubMed  Google Scholar 

  44. Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8(3):138–140

    CAS  PubMed  Google Scholar 

  45. Franck SE, Gatto F, van der Lely AJ, Janssen JA, Dallenga AH, Nagtegaal AP, Hofland LJ, Neggers SJ (2016) Somatostatin receptor expression in GH-secreting pituitary adenomas treated with long-acting somatostatin analogues in combination with pegvisomant. Neuroendocrinology. https://doi.org/10.1159/000448429

    Article  PubMed  Google Scholar 

  46. Inoshita N, Nishioka H (2018) The 2017 WHO classification of pituitary adenoma: overview and comments. Brain Tumor Pathol 35(2):51–56. https://doi.org/10.1007/s10014-018-0314-3

    Article  CAS  PubMed  Google Scholar 

  47. Kasajima A, Papotti M, Ito W, Brizzi MP, La Salvia A, Rapa I, Tachibana T, Yazdani S, Sasano H, Volante M (2018) High interlaboratory and interobserver agreement of somatostatin receptor immunohistochemical determination and correlation with response to somatostatin analogs. Hum Pathol 72:144–152. https://doi.org/10.1016/j.humpath.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  48. Puig-Domingo M, Gil J, Sampedro-Nunez M, Jorda M, Webb SM, Serra G, Pons L, Salinas I, Blanco A, Marques-Pamies M, Valassi E, Pico A, Garcia-Martinez A, Carrato C, Buj R, Del Pozo C, Obiols G, Villabona C, Camara R, Fajardo-Montanana C, Alvarez CV, Bernabeu I, Marazuela M (2020) Molecular profiling for acromegaly treatment: a validation study. Endocr Relat Cancer 27(6):375–389. https://doi.org/10.1530/ERC-18-0565

    Article  PubMed  Google Scholar 

  49. Chiloiro S, Bima C, Tartaglione T, Giampietro A, Gessi M, Lauretti L, Anile C, Colosimo C, Rindi G, Pontecorvi A, De Marinis L, Bianchi A (2019) Pasireotide and pegvisomant combination treatment in acromegaly resistant to second-line therapies: a longitudinal study. J Clin Endocrinol Metab 104(11):5478–5482. https://doi.org/10.1210/jc.2019-00825

    Article  PubMed  Google Scholar 

  50. Muhammad A, Coopmans EC, Gatto F, Franck SE, Janssen J, van der Lely AJ, Hofland LJ, Neggers S (2019) Pasireotide responsiveness in acromegaly is mainly driven by somatostatin receptor subtype 2 expression. J Clin Endocrinol Metab 104(3):915–924. https://doi.org/10.1210/jc.2018-01524

    Article  PubMed  Google Scholar 

  51. Coelho MCA, Vasquez ML, Wildemberg LE, Vazquez-Borrego MC, Bitana L, Camacho A, Silva D, Ogino LL, Ventura N, Chimelli L, Luque RM, Kasuki L, Gadelha MR (2018) Molecular evidence and clinical importance of beta-arrestins expression in patients with acromegaly. J Cell Mol Med 22(4):2110–2116. https://doi.org/10.1111/jcmm.13427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Venegas-Moreno E, Vazquez-Borrego MC, Dios E, Gros-Herguido N, Flores-Martinez A, Rivero-Cortes E, Madrazo-Atutxa A, Japon MA, Luque RM, Castano JP, Cano DA, Soto-Moreno A (2018) Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. J Cell Mol Med 22(3):1640–1649. https://doi.org/10.1111/jcmm.13440

    Article  CAS  PubMed  Google Scholar 

  53. Iacovazzo D, Carlsen E, Lugli F, Chiloiro S, Piacentini S, Bianchi A, Giampietro A, Mormando M, Clear AJ, Doglietto F, Anile C, Maira G, Lauriola L, Rindi G, Roncaroli F, Pontecorvi A, Korbonits M, De Marinis L (2016) Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol 174(2):241–250. https://doi.org/10.1530/EJE-15-0832

    Article  CAS  PubMed  Google Scholar 

  54. Murray RD, Kim K, Ren SG, Lewis I, Weckbecker G, Bruns C, Melmed S (2004) The novel somatostatin ligand (SOM230) regulates human and rat anterior pituitary hormone secretion. J Clin Endocrinol Metab 89(6):3027–3032. https://doi.org/10.1210/jc.2003-031319

    Article  CAS  PubMed  Google Scholar 

  55. Ibanez-Costa A, Rivero-Cortes E, Vazquez-Borrego MC, Gahete MD, Jimenez-Reina L, Venegas-Moreno E, de la Riva A, Arraez MA, Gonzalez-Molero I, Schmid HA, Maraver-Selfa S, Gavilan-Villarejo I, Garcia-Arnes JA, Japon MA, Soto-Moreno A, Galvez MA, Luque RM, Castano JP (2016) Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro. J Endocrinol 231(2):135–145. https://doi.org/10.1530/JOE-16-0332

    Article  CAS  PubMed  Google Scholar 

  56. Gatto F, Feelders RA, Franck SE, van Koetsveld PM, Dogan F, Kros JM, Neggers S, van der Lely AJ, Lamberts SWJ, Ferone D, Hofland LJ (2017) In vitro head-to-head comparison between octreotide and pasireotide in GH-secreting pituitary adenomas. J Clin Endocrinol Metab 102(6):2009–2018. https://doi.org/10.1210/jc.2017-00135

    Article  PubMed  Google Scholar 

  57. Colao A, Bronstein MD, Freda P, Gu F, Shen CC, Gadelha M, Fleseriu M, van der Lely AJ, Farrall AJ, Hermosillo Resendiz K, Ruffin M, Chen Y, Sheppard M, Pasireotide CSG (2014) Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab 99(3):791–799. https://doi.org/10.1210/jc.2013-2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gadelha MR, Bronstein MD, Brue T, Coculescu M, Fleseriu M, Guitelman M, Pronin V, Raverot G, Shimon I, Lievre KK, Fleck J, Aout M, Pedroncelli AM, Colao A, Pasireotide CSG (2014) Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol 2(11):875–884. https://doi.org/10.1016/S2213-8587(14)70169-X

    Article  CAS  PubMed  Google Scholar 

  59. Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M (2007) Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20(11):1172–1182. https://doi.org/10.1038/modpathol.3800954

    Article  CAS  PubMed  Google Scholar 

  60. Muhammad A, Coopmans EC, Delhanty PJD, Dallenga AHG, Haitsma IK, Janssen J, van der Lely AJ, Neggers S (2018) Efficacy and safety of switching to pasireotide in acromegaly patients controlled with pegvisomant and somatostatin analogues: PAPE extension study. Eur J Endocrinol 179(5):269–277. https://doi.org/10.1530/EJE-18-0353

    Article  CAS  PubMed  Google Scholar 

  61. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288(5463):154–157. https://doi.org/10.1126/science.288.5463.154

    Article  CAS  PubMed  Google Scholar 

  62. Baragli A, Alturaihi H, Watt HL, Abdallah A, Kumar U (2007) Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 Co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell Signal 19(11):2304–2316. https://doi.org/10.1016/j.cellsig.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  63. Ferone D, Saveanu A, Culler MD, Arvigo M, Rebora A, Gatto F, Minuto F, Jaquet P (2007) Novel chimeric somatostatin analogs: facts and perspectives. Eur J Endocrinol 156(Suppl 1):S23–S28. https://doi.org/10.1530/eje.1.02356

    Article  CAS  PubMed  Google Scholar 

  64. Saveanu A, Gunz G, Guillen S, Dufour H, Culler MD, Jaquet P (2006) Somatostatin and dopamine-somatostatin multiple ligands directed towards somatostatin and dopamine receptors in pituitary adenomas. Neuroendocrinology 83(3–4):258–263. https://doi.org/10.1159/000095536

    Article  CAS  PubMed  Google Scholar 

  65. Jaquet P, Gunz G, Saveanu A, Barlier A, Dufour H, Taylor J, Dong J, Kim S, Moreau JP, Culler MD (2005) BIM-23A760, a chimeric molecule directed towards somatostatin and dopamine receptors, vs universal somatostatin receptors ligands in GH-secreting pituitary adenomas partial responders to octreotide. J Endocrinol Investig 28(11 Suppl International):21–27

    CAS  Google Scholar 

  66. Jaquet P, Gunz G, Saveanu A, Dufour H, Taylor J, Dong J, Kim S, Moreau JP, Enjalbert A, Culler MD (2005) Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy. Eur J Endocrinol 153(1):135–141. https://doi.org/10.1530/eje.1.01950

    Article  CAS  PubMed  Google Scholar 

  67. Ibanez-Costa A, Lopez-Sanchez LM, Gahete MD, Rivero-Cortes E, Vazquez-Borrego MC, Galvez MA, de la Riva A, Venegas-Moreno E, Jimenez-Reina L, Moreno-Carazo A, Tinahones FJ, Maraver-Selfa S, Japon MA, Garcia-Arnes JA, Soto-Moreno A, Webb SM, Kineman RD, Culler MD, Castano JP, Luque RM (2017) BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries: molecular mechanisms underlying the differential response in adenomas. Sci Rep 7:42002. https://doi.org/10.1038/srep42002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Culler MD (2011) Somatostatin-dopamine chimeras: a novel approach to treatment of neuroendocrine tumors. Horm Metab Res 43(12):854–857. https://doi.org/10.1055/s-0031-1287769

    Article  CAS  PubMed  Google Scholar 

  69. Vazquez-Borrego MC, Galvez-Moreno MA, Fuentes-Fayos AC, Venegas-Moreno E, Herrera-Martinez AD, Blanco-Acevedo C, Solivera J, Landsman T, Gahete MD, Soto-Moreno A, Culler MD, Castano JP, Luque RM (2020) A new generation somatostatin-dopamine analogue exerts potent antitumoral actions on pituitary neuroendocrine tumor cells. Neuroendocrinology 110(1–2):70–82. https://doi.org/10.1159/000500812

    Article  CAS  PubMed  Google Scholar 

  70. de Boon WMI, van Esdonk MJ, Stuurman FE, Biermasz NR, Pons L, Paty I, Burggraaf J (2019) A novel somatostatin-dopamine chimera (BIM23B065) reduced GH secretion in a first-in-human clinical trial. J Clin Endocrinol Metab 104(3):883–891. https://doi.org/10.1210/jc.2018-01364

    Article  PubMed  Google Scholar 

  71. Beck-Peccoz P, Lania A, Beckers A, Chatterjee K, Wemeau JL (2013) 2013 European thyroid association guidelines for the diagnosis and treatment of thyrotropin-secreting pituitary tumors. Eur Thyroid J 2(2):76–82. https://doi.org/10.1159/000351007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gatto F, Grasso LF, Nazzari E, Cuny T, Anania P, Di Somma C, Colao A, Zona G, Weryha G, Pivonello R, Ferone D (2015) Clinical outcome and evidence of high rate post-surgical anterior hypopituitarism in a cohort of TSH-secreting adenoma patients: might somatostatin analogs have a role as first-line therapy? Pituitary 18(5):583–591. https://doi.org/10.1007/s11102-014-0611-8

    Article  CAS  PubMed  Google Scholar 

  73. Fukuhara N, Horiguchi K, Nishioka H, Suzuki H, Takeshita A, Takeuchi Y, Inoshita N, Yamada S (2015) Short-term preoperative octreotide treatment for TSH-secreting pituitary adenoma. Endocr J 62(1):21–27. https://doi.org/10.1507/endocrj.EJ14-0118

    Article  CAS  PubMed  Google Scholar 

  74. van Varsseveld NC, Bisschop PH, Biermasz NR, Pereira AM, Fliers E, Drent ML (2014) A long-term follow-up study of eighteen patients with thyrotrophin-secreting pituitary adenomas. Clin Endocrinol (Oxf) 80(3):395–402. https://doi.org/10.1111/cen.12290

    Article  Google Scholar 

  75. Horiguchi K, Yamada M, Umezawa R, Satoh T, Hashimoto K, Tosaka M, Yamada S, Mori M (2007) Somatostatin receptor subtypes mRNA in TSH-secreting pituitary adenomas: a case showing a dramatic reduction in tumor size during short octreotide treatment. Endocr J 54(3):371–378. https://doi.org/10.1507/endocrj.k06-177

    Article  CAS  PubMed  Google Scholar 

  76. Capraru OM, Gaillard C, Vasiljevic A, Lasolle H, Borson-Chazot F, Raverot V, Jouanneau E, Trouillas J, Raverot G (2019) Diagnosis, pathology, and management of TSH-secreting pituitary tumors. A single-center retrospective study of 20 patients from 1981 to 2014. Ann Endocrinol (Paris) 80(4):216–224. https://doi.org/10.1016/j.ando.2019.06.006

    Article  Google Scholar 

  77. Grant M, Alturaihi H, Jaquet P, Collier B, Kumar U (2008) Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol Endocrinol 22(10):2278–2292. https://doi.org/10.1210/me.2007-0334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Eersel MEA, Meeuwisse-Pasterkamp SH, Muller Kobold AC, Meiners LC, den Dunnen WF, Hofland LJ, van den Berg G (2017) Treatment of a thyrotropin-secreting pituitary adenoma (TSH-oma) with pasireotide LAR. Clin Endocrinol (Oxf) 87(6):877–879. https://doi.org/10.1111/cen.13431

    Article  Google Scholar 

  79. Pivonello R, De Leo M, Cozzolino A, Colao A (2015) The treatment of Cushing's disease. Endocr Rev 36(4):385–486. https://doi.org/10.1210/er.2013-1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stalla GK, Brockmeier SJ, Renner U, Newton C, Buchfelder M, Stalla J, Muller OA (1994) Octreotide exerts different effects in vivo and in vitro in Cushing's disease. Eur J Endocrinol 130(2):125–131. https://doi.org/10.1530/eje.0.1300125

    Article  CAS  PubMed  Google Scholar 

  81. Lamberts SW, Uitterlinden P, Klijn JM (1989) The effect of the long-acting somatostatin analogue SMS 201–995 on ACTH secretion in Nelson's syndrome and Cushing's disease. Acta Endocrinol (Copenh) 120(6):760–766. https://doi.org/10.1530/acta.0.1200760

    Article  CAS  Google Scholar 

  82. Ambrosi B, Bochicchio D, Fadin C, Colombo P, Faglia G (1990) Failure of somatostatin and octreotide to acutely affect the hypothalamic-pituitary-adrenal function in patients with corticotropin hypersecretion. J Endocrinol Investig 13(3):257–261. https://doi.org/10.1007/BF03349555

    Article  CAS  Google Scholar 

  83. Hofland LJ, van der Hoek J, Feelders R, van Aken MO, van Koetsveld PM, Waaijers M, Sprij-Mooij D, Bruns C, Weckbecker G, de Herder WW, Beckers A, Lamberts SW (2005) The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol 152(4):645–654. https://doi.org/10.1530/eje.1.01876

    Article  CAS  PubMed  Google Scholar 

  84. Ben-Shlomo A, Schmid H, Wawrowsky K, Pichurin O, Hubina E, Chesnokova V, Liu NA, Culler M, Melmed S (2009) Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 94(11):4342–4350. https://doi.org/10.1210/jc.2009-1311

    Article  CAS  PubMed  Google Scholar 

  85. de Bruin C, Pereira AM, Feelders RA, Romijn JA, Roelfsema F, Sprij-Mooij DM, van Aken MO, van der Lelij AJ, de Herder WW, Lamberts SW, Hofland LJ (2009) Coexpression of dopamine and somatostatin receptor subtypes in corticotroph adenomas. J Clin Endocrinol Metab 94(4):1118–1124. https://doi.org/10.1210/jc.2008-2101

    Article  CAS  PubMed  Google Scholar 

  86. Behling F, Honegger J, Skardelly M, Gepfner-Tuma I, Tabatabai G, Tatagiba M, Schittenhelm J (2018) High expression of somatostatin receptors 2A, 3, and 5 in corticotroph pituitary adenoma. Int J Endocrinol 2018:1763735. https://doi.org/10.1155/2018/1763735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hayashi K, Inoshita N, Kawaguchi K, Ibrahim Ardisasmita A, Suzuki H, Fukuhara N, Okada M, Nishioka H, Takeuchi Y, Komada M, Takeshita A, Yamada S (2016) The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing's disease. Eur J Endocrinol 174(2):213–226. https://doi.org/10.1530/EJE-15-0689

    Article  CAS  PubMed  Google Scholar 

  88. Melmed S (2020) Pituitary-tumor endocrinopathies. N Engl J Med 382(10):937–950. https://doi.org/10.1056/NEJMra1810772

    Article  CAS  PubMed  Google Scholar 

  89. de Bruin C, Hofland LJ, Nieman LK, van Koetsveld PM, Waaijers AM, Sprij-Mooij DM, van Essen M, Lamberts SW, de Herder WW, Feelders RA (2012) Mifepristone effects on tumor somatostatin receptor expression in two patients with Cushing's syndrome due to ectopic adrenocorticotropin secretion. J Clin Endocrinol Metab 97(2):455–462. https://doi.org/10.1210/jc.2011-1264

    Article  CAS  PubMed  Google Scholar 

  90. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Schoenherr U, Mills D, Salgado LR, Biller BM, Pasireotide BSG (2012) A 12-month phase 3 study of pasireotide in Cushing's disease. N Engl J Med 366(10):914–924. https://doi.org/10.1056/NEJMoa1105743

    Article  CAS  PubMed  Google Scholar 

  91. Lacroix A, Gu F, Gallardo W, Pivonello R, Yu Y, Witek P, Boscaro M, Salvatori R, Yamada M, Tauchmanova L, Roughton M, Ravichandran S, Petersenn S, Biller BMK, Newell-Price J, Pasireotide GSG (2018) Efficacy and safety of once-monthly pasireotide in Cushing's disease: a 12 month clinical trial. Lancet Diabetes Endocrinol 6(1):17–26. https://doi.org/10.1016/S2213-8587(17)30326-1

    Article  CAS  PubMed  Google Scholar 

  92. Asa SL, Ezzat S (2009) The pathogenesis of pituitary tumors. Annu Rev Pathol 4:97–126. https://doi.org/10.1146/annurev.pathol.4.110807.092259

    Article  CAS  PubMed  Google Scholar 

  93. Lee M, Lupp A, Mendoza N, Martin N, Beschorner R, Honegger J, Schlegel J, Shively T, Pulz E, Schulz S, Roncaroli F, Pellegata NS (2015) SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary. Endocr Relat Cancer 22(1):111–119. https://doi.org/10.1530/ERC-14-0472

    Article  CAS  PubMed  Google Scholar 

  94. Oystese KA, Casar-Borota O, Normann KR, Zucknick M, Berg JP, Bollerslev J (2017) Estrogen receptor alpha, a sex-dependent predictor of aggressiveness in nonfunctioning pituitary adenomas: SSTR and sex hormone receptor distribution in NFPA. J Clin Endocrinol Metab 102(9):3581–3590. https://doi.org/10.1210/jc.2017-00792

    Article  PubMed  Google Scholar 

  95. Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G, Savastano S (2008) Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer 15(4):905–915. https://doi.org/10.1677/ERC-08-0181

    Article  CAS  PubMed  Google Scholar 

  96. Florio T, Thellung S, Arena S, Corsaro A, Spaziante R, Gussoni G, Acuto G, Giusti M, Giordano G, Schettini G (1999) Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro. Eur J Endocrinol 141(4):396–408. https://doi.org/10.1530/eje.0.1410396

    Article  CAS  PubMed  Google Scholar 

  97. Florio T, Barbieri F, Spaziante R, Zona G, Hofland LJ, van Koetsveld PM, Feelders RA, Stalla GK, Theodoropoulou M, Culler MD, Dong J, Taylor JE, Moreau JP, Saveanu A, Gunz G, Dufour H, Jaquet P (2008) Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr Relat Cancer 15(2):583–596. https://doi.org/10.1677/ERC-07-0271

    Article  CAS  PubMed  Google Scholar 

  98. Zatelli MC, Piccin D, Vignali C, Tagliati F, Ambrosio MR, Bondanelli M, Cimino V, Bianchi A, Schmid HA, Scanarini M, Pontecorvi A, De Marinis L, Mairadegli Uberti GEC (2007) Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr Relat Cancer 14(1):91–102. https://doi.org/10.1677/ERC-06-0026

    Article  CAS  PubMed  Google Scholar 

  99. Vazquez-Borrego MC, Gupta V, Ibanez-Costa A, Gahete MD, Venegas-Moreno E, Toledano-Delgado A, Cano DA, Blanco-Acevedo C, Ortega-Salas R, Japon MA, Barrera-Martin A, Vasiljevic A, Hill J, Zhang S, Halem H, Solivera J, Raverot G, Galvez MA, Soto-Moreno A, Paez-Pereda M, Culler MD, Castano JP, Luque RM (2020) A somatostatin receptor subtype-3 (SST3) peptide agonist shows antitumor effects in experimental models of nonfunctioning pituitary tumors. Clin Cancer Res 26(4):957–969. https://doi.org/10.1158/1078-0432.CCR-19-2154

    Article  CAS  PubMed  Google Scholar 

  100. Fuentes-Fayos AC, Garcia-Martinez A, Herrera-Martinez AD, Jimenez-Vacas JM, Vazquez-Borrego MC, Castano JP, Pico A, Gahete MD, Luque RM (2019) Molecular determinants of the response to medical treatment of growth hormone secreting pituitary neuroendocrine tumors. Minerva Endocrinol 44(2):109–128. https://doi.org/10.23736/S0391-1977.19.02970-5

    Article  PubMed  Google Scholar 

  101. Hofland LJ, Lamberts SW (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24(1):28–47. https://doi.org/10.1210/er.2000-0001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

F.G. sincerely thanks the Italian Society of Endocrinology for awarding with the “Premio SIE 35”, as Best Young Researcher in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gatto.

Ethics declarations

Conflict of interest

F.G. received fees for lectures and/or participation to advisory boards for Novartis, AMCo, and IONIS Pharmaceuticals. D.F. received grants and fees for lectures and participation to advisory boards for Novartis, Ipsen and Pfizer. M.A. has nothing to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No Informed Consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatto, F., Arvigo, M. & Ferone, D. Somatostatin receptor expression and patients’ response to targeted medical treatment in pituitary tumors: evidences and controversies. J Endocrinol Invest 43, 1543–1553 (2020). https://doi.org/10.1007/s40618-020-01335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01335-0

Keywords

Navigation