Skip to main content

Advertisement

Log in

Molecular markers for the classification of cytologically indeterminate thyroid nodules

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

The diagnosis of indeterminate lesions of the thyroid is a challenge in cytopathology practice. Indeed, up to 30% of cases lack the morphological features needed to provide definitive classification. Molecular tests have been developed to assist in the diagnosis of these indeterminate cases. The first studies dealing with the preoperative molecular evaluation of FNA samples focused on the analysis of BRAFV600E or on the combined evaluation of two or three genetic alterations. The sensitivity of molecular testing was then improved through the introduction of gene panels, which became available for clinical use in the late 2000s.

Two different categories of molecular tests have been developed, the ‘rule-out’ methods, which aim to reduce the avoidable treatment of benign nodules, and the ‘rule-in’ tests that have the purpose to optimize surgical management. The genetic evaluation of indeterminate thyroid nodules is predicted to improve patient care, particularly if molecular tests are used appropriately and with the awareness of their advantages and weaknesses. The main disadvantage of these tests is the cost, which makes them rarely used in Europe. To overcome this limitation, customized panels have been set up, which are able to detect the most frequent genetic alterations of thyroid cancer.

Conclusions

In the present review, the most recent available versions of commercial molecular tests and of custom, non-commercial panels are described. Their characteristics and accuracy in the differential diagnosis of indeterminate nodules, namely Bethesda classes III (Atypical follicular lesion of undetermined significance, AUS/FLUS) and IV (Suspicious for follicular neoplasm, FN/SFN) are fully analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cibas ES, Ali SZ (2017) The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 27:1341–1346

    Article  PubMed  Google Scholar 

  2. Ho AS, Sarti EE, Jain KS, Wang H, Nixon IJ, Shaha AR et al (2014) Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid 24:832–839

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676–690

    Article  CAS  Google Scholar 

  4. McFadden DG, Dias-Santagata D, Sadow PM, Lynch KD, Lubitz C, Donovan SE et al (2014) Identification of oncogenic mutations and gene fusions in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 99:E2457–E2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim TH, Lee M, Kwon AY, Choe JH, Kim JH, Kim JS et al (2018) Molecular genotyping of the non-invasive encapsulated follicular variant of papillary thyroid carcinoma. Histopathology 72:648–661

    Article  PubMed  Google Scholar 

  6. Xu B, Ghossein R (2016) Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma. Endocr Pathol 27:205–212

    Article  CAS  PubMed  Google Scholar 

  7. Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, Seshan V et al (2018) Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 34:256-270.e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Seo JY, Choi JR, Moon HJ, Kim EK, Han KH, Kim H et al (2015) Clinical Implication of highly sensitive detection of the BRAFV600E mutation in fine-needle aspirations according to the thyroid Bethesda system in patients with conventional papillary thyroid carcinoma. Ann Otol Rhinol Laryngol 124:392–399

    Article  PubMed  Google Scholar 

  9. Marchetti I, Lessi F, Mazzanti CM, Bertacca G, Elisei R, Coscio GD et al (2009) A morphomolecular diagnosis of papillary thyroid carcinoma: BRAF V600E detection as an important tool in preoperative evaluation of fine-needle aspirates. Thyroid 19:837–842

    Article  CAS  PubMed  Google Scholar 

  10. Patel A, Klubo-Gwiezdzinska J, Hoperia V, Larin A, Jensen K, Bauer A et al (2011) BRAF(V600E) mutation analysis from May-Grunwald Giemsa-stained cytological samples as an adjunct in identification of high-risk papillary thyroid carcinoma. Endocr Pathol 22:195–199

    Article  CAS  PubMed  Google Scholar 

  11. Kang G, Cho EY, Shin JH, Chung JH, Kim JW, Oh YL (2012) Role of BRAFV600E mutation analysis and second cytologic review of fine-needle aspiration for evaluating thyroid nodule. Cancer Cytopathol 120:44–51

    Article  CAS  PubMed  Google Scholar 

  12. Brahma B, Yulian ED, Ramli M, Setianingsih I, Gautama W, Brahma P et al (2013) Surgical perspective of T1799A BRAF mutation diagnostic value in papillary thyroid carcinoma. Asian Pac J Cancer Prev 14:31–37

    Article  PubMed  Google Scholar 

  13. Panebianco F, Mazzanti C, Tomei S, Aretini P, Franceschi S, Lessi F et al (2015) The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer 15:918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shi Q, Ibrahim A, Herbert K, Carvin M, Randolph M, Post KM et al (2015) Detection of BRAF mutations on direct smears of thyroid fine-needle aspirates through cell transfer technique. Am J Clin Pathol 143:500–504

    Article  PubMed  Google Scholar 

  15. Rho M, Kim EK, Moon HJ, Yoon JH, Park VY, Han K et al (2017) Clinical parameter for deciding the BRAFV600E mutation test in atypia of undetermined significance/follicular lesion of undetermined significance thyroid nodules: US features according to TIRADS. Ultrasound Q 33:284–288

    Article  PubMed  Google Scholar 

  16. Rossi M, Lupo S, Rossi R, Franceschetti P, Trasforini G, Bruni S et al (2017) Proposal for a novel management of indeterminate thyroid nodules on the basis of cytopathological subclasses. Endocrine 57:98–107

    Article  CAS  PubMed  Google Scholar 

  17. Seo JW, Jang AL, Suh SH, Park HS, Kang MK, Hong JC (2017) Atypia of undetermined significance on thyroid fine needle aspiration—risk factors for malignancy. Clin Otolaryngol 42:234–238

    Article  CAS  PubMed  Google Scholar 

  18. Kim DS, Kim DW, Heo YJ, Baek JW, Lee YJ, Choo HJ et al (2018) Utility of including BRAF mutation analysis with ultrasonographic and cytological diagnoses in ultrasonography-guided fine-needle aspiration of thyroid nodules. PLoS One 13:e0202687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rossi ED, Martini M, Capodimonti S, Cenci T, Bilotta M, Pierconti F et al (2018) Morphology combined with ancillary techniques: an algorithm approach for thyroid nodules. Cytopathology 29:418–427

    Article  CAS  PubMed  Google Scholar 

  20. Girlando S, Cuorvo LV, Bonzanini M, Morelli L, Amadori P, Dalla Palma P et al (2010) High prevalence of B-RAF mutation in papillary carcinoma of the thyroid in north-east Italy. Int J Surg Pathol 18:173–176

    Article  CAS  PubMed  Google Scholar 

  21. Nam SY, Han BK, Ko EY, Kang SS, Hahn SY, Hwang JY et al (2010) BRAF V600E mutation analysis of thyroid nodules needle aspirates in relation to their ultrasonographic classification: a potential guide for selection of samples for molecular analysis. Thyroid 20:273–279

    Article  CAS  PubMed  Google Scholar 

  22. Paskas S, Jankovic J, Zivaljevic V, Tatic S, Bozic V, Nikolic A et al (2015) Malignant risk stratification of thyroid FNA specimens with indeterminate cytology based on molecular testing. Cancer Cytopathol 123:471–479

    Article  CAS  PubMed  Google Scholar 

  23. Gay S, Schiaffino S, Santamorena G, Massa B, Ansaldo G, Turtulici G et al (2018) Role of strain elastography and shearwave elastography in a multiparametric clinical approach to indeterminate cytology thyroid nodules. Med Sci Monit 24:6273–6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Benedetto G, Fabozzi A, Rinaldi C (2013) Clinical management of thyroid nodules with indeterminate cytology: our institutional experience using SIAPEC cytological criteria and V600-BRAF test. Pathologica 105:1–4

    PubMed  Google Scholar 

  25. Monti E, Bovero M, Mortara L, Pera G, Zupo S, Gugiatti E et al (2015) BRAF Mutations in an Italian regional population: implications for the therapy of thyroid cancer. Int J Endocrinol 2015:138734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jo YS, Huang S, Kim YJ, Lee IS, Kim SS, Kim JR et al (2009) Diagnostic value of pyrosequencing for the BRAF V600E mutation in ultrasound-guided fine-needle aspiration biopsy samples of thyroid incidentalomas. Clin Endocrinol (Oxf) 70:139–144

    Article  CAS  Google Scholar 

  27. Adeniran AJ, Hui P, Chhieng DC, Prasad ML, Schofield K, Theoharis C (2011) BRAF mutation testing of thyroid fine-needle aspiration specimens enhances the predictability of malignancy in thyroid follicular lesions of undetermined significance. Acta Cytol 55:570–575

    Article  CAS  PubMed  Google Scholar 

  28. Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH et al (2011) Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J Clin Endocrinol Metab 96:658–664

    Article  CAS  PubMed  Google Scholar 

  29. Pelizzo MR, Boschin IM, Barollo S, Pennelli G, Toniato A, Zambonin L et al (2011) BRAF analysis by fine needle aspiration biopsy of thyroid nodules improves preoperative identification of papillary thyroid carcinoma and represents a prognostic factor. A mono-institutional experience. Clin Chem Lab Med 49:325–329

    Article  CAS  PubMed  Google Scholar 

  30. Yeo MK, Liang ZL, Oh T, Moon Y, An S, Kim MK et al (2011) Pyrosequencing cut-off value identifying BRAFV600E mutation in fine needle aspiration samples of thyroid nodules. Clin Endocrinol (Oxf) 75:555–560

    Article  Google Scholar 

  31. Canadas-Garre M, Becerra-Massare P, Lopez de la Torre-Casares M, Villar-del Moral J, Cespedes-Mas S, Vilchez-Joya R et al (2012) Reduction of false negative papillary thyroid carcinomas by the routine analysis of BRAF(T1799A) mutation on fine-needle aspiration biopsy specimens: a prospective study of 814 thyroid FNAB patients. Ann Surg 255:986–992

    Article  PubMed  Google Scholar 

  32. Lee ST, Kim SW, Ki CS, Jang JH, Shin JH, Oh YL et al (2012) Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab 97:2299–2306

    Article  CAS  PubMed  Google Scholar 

  33. Jeong SH, Hong HS, Lee EH, Cha JG, Park JS, Kwak JJ (2013) Outcome of thyroid nodules characterized as atypia of undetermined significance or follicular lesion of undetermined significance and correlation with Ultrasound features and BRAF(V600E) mutation analysis. AJR Am J Roentgenol 201:W854–W860

    Article  PubMed  Google Scholar 

  34. Kloos RT, Reynolds JD, Walsh PS, Wilde JI, Tom EY, Pagan M et al (2013) Does addition of BRAF V600E mutation testing modify sensitivity or specificity of the Afirma gene expression classifier in cytologically indeterminate thyroid nodules? J Clin Endocrinol Metab 98:E761–E768

    Article  CAS  PubMed  Google Scholar 

  35. Koh J, Choi JR, Han KH, Kim EK, Yoon JH, Moon HJ et al (2013) Proper indication of BRAF(V600E) mutation testing in fine-needle aspirates of thyroid nodules. PLoS One 8:e64505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agretti P, Niccolai F, Rago T, De Marco G, Molinaro A, Scutari M et al (2014) BRAF mutation analysis in thyroid nodules with indeterminate cytology: our experience on surgical management of patients with thyroid nodules from an area of borderline iodine deficiency. J Endocrinol Invest 37:1009–1014

    Article  CAS  PubMed  Google Scholar 

  37. Danilovic DL, Lima EU, Domingues RB, Brandao LG, Hoff AO, Marui S (2014) Pre-operative role of BRAF in the guidance of the surgical approach and prognosis of differentiated thyroid carcinoma. Eur J Endocrinol 170:619–625

    Article  CAS  PubMed  Google Scholar 

  38. Johnson SJ, Hardy SA, Roberts C, Bourn D, Mallick U, Perros P (2014) Pilot of BRAF mutation analysis in indeterminate, suspicious and malignant thyroid FNA cytology. Cytopathology 25:146–154

    Article  CAS  PubMed  Google Scholar 

  39. Park HJ, Moon JH, Yom CK, Kim KH, Choi JY, Choi SI et al (2014) Thyroid ‘‘atypia of undetermined significance’’ with nuclear atypia has high rates of malignancy and BRAF mutation. Cancer Cytopathol 122:512–520

    Article  CAS  PubMed  Google Scholar 

  40. Seo JY, Kim EK, Baek JH, Shin JH, Han KH, Kwak JY (2014) Can ultrasound be as a surrogate marker for diagnosing a papillary thyroid cancer? Comparison with BRAF mutation analysis. Yonsei Med J 55:871–878

    Article  PubMed  PubMed Central  Google Scholar 

  41. Seo JY, Kim EK, Kwak JY (2014) Additional BRAF mutation analysis may have additional diagnostic value in thyroid nodules with ‘‘suspicious for malignant’’ cytology alone even when the nodules do not show suspicious US features. Endocrine 47:283–289

    Article  CAS  PubMed  Google Scholar 

  42. Marino M, Monzani ML, Brigante G, Cioni K, Madeo B, Santi D et al (2015) High resolution melting is a sensitive, cost-effective, timesaving technique for BRAF V600E detection in thyroid FNAB washing liquid: a prospective cohort study. Eur Thyroid J 4:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park KS, Oh YL, Ki CS, Kim JW (2015) Evaluation of the real-Q BRAF V600E detection assay in fine-needle aspiration samples of thyroid nodules. J Mol Diagn 17:431–437

    Article  CAS  PubMed  Google Scholar 

  44. Kim TH, Jeong DJ, Hahn SY, Shin JH, Oh YL, Ki CS et al (2016) Triage of patients with AUS/FLUS on thyroid cytopathology: effectiveness of the multimodal diagnostic techniques. Cancer Med 5:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kowalska A, Kowalik A, Palyga I, Walczyk A, Gasior-Perczak D, Kopczynski J et al (2016) The usefulness of determining the presence of BRAF V600E mutation in fine-needle aspiration cytology in indeterminate cytological results. Endokrynol Pol 67:41–47

    Article  CAS  PubMed  Google Scholar 

  46. Beisa A, Kvietkauskas M, Beisa V, Stoskus M, Ostaneviciute E, Jasiunas E et al (2017) The utility of the Bethesda category and its association with BRAF mutation in the prediction of papillary thyroid cancer stage. Langenbecks Arch Surg 402:227–234

    Article  PubMed  Google Scholar 

  47. Salvatore G, Giannini R, Faviana P, Caleo A, Migliaccio I, Fagin JA et al (2004) Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89:5175–5180

    Article  CAS  PubMed  Google Scholar 

  48. Domingues R, Mendonça E, Sobrinho L, Bugalho MJ (2005) Searching for RET/PTC rearrangements and BRAF V599E mutation in thyroid aspirates might contribute to establish a preoperative diagnosis of papillary thyroid carcinoma. Cytopathology 16:27–31

    Article  CAS  PubMed  Google Scholar 

  49. Sapio MR, Posca D, Raggioli A, Guerra A, Marotta V, Deandrea M et al (2007) Detection of RET/PTC, TRK and BRAF mutations in preoperative diagnosis of thyroid nodules with indeterminate cytological findings. Clin Endocrinol (Oxf) 66:678–683

    Article  CAS  Google Scholar 

  50. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL et al (2011) Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96:3390–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE (2013) Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab 98:E1852–E1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL et al (2014) Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by Thyroseq v2 next generation sequencing assay. Cancer 120:3627–3634

    Article  CAS  PubMed  Google Scholar 

  53. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, LeBeau S, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN (2015) Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 25:1217–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J et al (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367:705–715

    Article  CAS  PubMed  Google Scholar 

  55. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ 3rd, Scognamiglio T (2008) MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 21:1139–1146

    Article  CAS  PubMed  Google Scholar 

  56. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov Y (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93:1600–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Swierniak M, Wojcicka A, Czetwertynska M, Stachlewska E, Maciag M, Wiechno W et al (2013) In-depth characterization of the microRNA transcriptome in normal thyroid and papillary thyroid carcinoma. J Clin Endocrinol Metab 98:E1401–E1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mancikova V, Castelblanco E, Pineiro-Yanez E, Perales-Paton J, de Cubas AA, Inglada-Perez L et al (2015) MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors. Mod Pathol 28:748–757

    Article  CAS  PubMed  Google Scholar 

  59. Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, Nikiforova MN (2011) MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol 18:2035–2041

    Article  PubMed  Google Scholar 

  60. Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY (2016) MicroRNAs as a potential tool in the differential diagnosis of thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 84:127–133

    Article  CAS  Google Scholar 

  61. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pacini F, Basolo F, Bellantone R, Boni G, Cannizzaro MA, De Palma M et al (2018) Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest 41:849–876

    Article  CAS  PubMed  Google Scholar 

  63. Sciacchitano S, Lavra L, Ulivieri A, Magi F, De Francesco GP, Bellotti C et al (2017) Comparative analysis of diagnostic performance, feasibility and cost of different test-methods for thyroid nodules with indeterminate cytology. Oncotarget 8:49421–49442

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L et al (2018) Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 124:1682–1690

    Article  CAS  PubMed  Google Scholar 

  65. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA et al (2019) Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol 5:204–212

    Article  PubMed  Google Scholar 

  66. Jug R, Parajuli S, Ahmadi S, Jiang XS (2019) Negative results on thyroid molecular testing decrease rates of surgery for indeterminate thyroid nodules. Endocr Pathol 30:134–137

    Article  CAS  PubMed  Google Scholar 

  67. Shrestha RT, Evasovich MR, Amin K, Radulescu A, Sanghvi TS, Nelson AC et al (2016) Correlation between histological diagnosis and mutational panel testing of thyroid nodules: a two-year institutional experience. Thyroid 26:1068–1076

    Article  PubMed  PubMed Central  Google Scholar 

  68. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH et al (2017) Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer 24:127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taye A, Gurciullo D, Miles BA, Gupta A, Owen RP, Inabnet WB 3rd et al (2018) Clinical performance of a next-generation sequencing assay (ThyroSeq v2) in the evaluation of indeterminate thyroid nodules. Surgery 163:97–103

    Article  PubMed  Google Scholar 

  70. Marcadis AR, Valderrabano P, Ho AS, Tepe J, Swartzwelder CE, Byrd S, Sacks WL et al (2019) Interinstitutional variation in predictive value of the ThyroSeq v2 genomic classifier for cytologically indeterminate thyroid nodules. Surgery 165:17–24

    Article  PubMed  Google Scholar 

  71. Al-Qurayshi Z, Deniwar A, Thethi T, Mallik T, Srivastav S, Murad F et al (2017) Association of malignancy prevalence with test properties and performance of the gene expression classifier in indeterminate thyroid nodules. JAMA Otolaryngol Head Neck Surg 143:403–408

    Article  PubMed  Google Scholar 

  72. Harrell RM, Bimston DN (2014) Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract 20:364–369

    Article  PubMed  Google Scholar 

  73. Lastra RR, Pramick MR, Crammer CJ, LiVolsi VA, Baloch ZW (2014) Implications of a suspicious Afirma test result in thyroid fine-needle aspiration cytology: an institutional experience. Cancer Cytopathol 122:737–744

    Article  PubMed  Google Scholar 

  74. Brauner E, Holmes BJ, Krane JF, Nishino M, Zurakowski D, Hennessey JV et al (2015) Performance of the Afirma gene expression classifier in Hürthle cell thyroid nodules differs from other indeterminate thyroid nodules. Thyroid 25:789–796

    Article  PubMed  Google Scholar 

  75. Yang SE, Sullivan PS, Zhang J, Govind R, Levin MR, Rao JY et al (2016) Has Afirma gene expression classifier testing refined the indeterminate thyroid category in cytology? Cancer Cytopathol 124:100–109

    Article  PubMed  Google Scholar 

  76. Angell TE, Heller HT, Cibas ES, Barletta JA, Kim MI, Krane JF et al (2019) Independent comparison of the afirma genomic sequencing classifier and gene expression classifier for cytologically indeterminate thyroid nodules. Thyroid 29:650–656

    Article  CAS  PubMed  Google Scholar 

  77. Sacks WL, Bose S, Zumsteg ZS, Wong R, Shiao SL, Braunstein GD et al (2016) Impact of Afirma gene expression classifier on cytopathology diagnosis and rate of thyroidectomy. Cancer 124:722–728

    Google Scholar 

  78. Wu JX, Young S, Hung ML, Li N, Yang SE, Cheung DS et al (2016) Clinical factors influencing the performance of gene expression classifier testing in indeterminate thyroid nodules. Thyroid 26:916–922

    Article  PubMed  Google Scholar 

  79. Walts AE, Sacks WL, Wu HH, Randolph ML, Bose S (2018) A retrospective analysis of the performance of the RosettaGX® Reveal™ thyroid miRNA and the Afirma gene expression classifiers in a cohort of cytologically indeterminate thyroid nodules. Diagn Cytopathol 46:901–907

    Article  PubMed  Google Scholar 

  80. Wong KS, Angell TE, Strickland KC, Alexander EK, Cibas ES, Krane JF et al (2016) Noninvasive follicular variant of papillary thyroid carcinoma and the Afirma gene expression classifier. Thyroid 26:911–915

    Article  PubMed  Google Scholar 

  81. Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F et al (2014) Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab 99:119–125

    Article  CAS  PubMed  Google Scholar 

  82. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M et al (2014) An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 99:4069–4077

    Article  CAS  PubMed  Google Scholar 

  83. Celik B, Whetsell CR, Nassar A (2015) Afirma GEC and thyroid lesions: an institutional experience. Diagn Cytopathol 43:966–970

    Article  PubMed  Google Scholar 

  84. Marti JL, Avadhani V, Donatelli LA, Niyogi S, Wang B, Wong RJ et al (2015) Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol 22:3996–4001

    Article  PubMed  PubMed Central  Google Scholar 

  85. Noureldine SI, Olson MT, Agrawal N, Prescott JD, Zeiger MA, Tufano RP (2015) Effect of gene expression classifier molecular testing on the surgical decision-making process for patients with thyroid nodules. JAMA Otolaryngol Head Neck Surg 141:1082–1088

    Article  PubMed  Google Scholar 

  86. Samulski TD, LiVolsi VA, Wong LQ, Baloch Z (2016) Usage trends and performance characteristics of a “gene expression classifier” in the management of thyroid nodules: an institutional experience. Diagn Cytopathol 44:867–873

    Article  PubMed  Google Scholar 

  87. Baca SC, Wong KS, Strickland KC, Heller HT, Kim MI, Barletta JA et al (2017) Qualifiers of atypia in the cytologic diagnosis of thyroid nodules are associated with different Afirma gene expression classifier results and clinical outcomes. Cancer Cytopathol 125:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kay-Rivest E, Tibbo J, Bouhabel S, Tamilia M, Leboeuf R, Forest VI et al (2017) The first Canadian experience with the Afirma® gene expression classifier test. J Otolaryngol Head Neck Surg 46:25

    Article  PubMed  PubMed Central  Google Scholar 

  89. Harrison G, Sosa JA, Jiang X (2017) Evaluation of the Afirma gene expression classifier in repeat indeterminate thyroid nodules. Arch Pathol Lab Med 141:985–989

    Article  CAS  PubMed  Google Scholar 

  90. Hang JF, Westra WH, Cooper DS, Ali SZ (2017) The impact of noninvasive follicular thyroid neoplasm with papillary-like nuclear features on the performance of the Afirma gene expression classifier. Cancer Cytopathol 125:683–691

    Article  PubMed  Google Scholar 

  91. Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY et al (2018) Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg 153:817–824

    Article  PubMed  PubMed Central  Google Scholar 

  92. Harrell RM, Eyerly-Webb SA, Golding AC, Edwards CM, Bimston DN (2019) Statistical comparison of Afirma GSC and Afirma GEC outcomes in a community endocrine surgical practice: early findings. Endocr Pract 25:161–164

    Article  PubMed  Google Scholar 

  93. Endo M, Nabhan F, Porter K, Roll K, Shirley L, Azaryan I et al (2019) Afirma gene sequencing classifier compared to gene expression classifier in indeterminate thyroid nodules. Thyroid 29:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. San Martin VT, Lawrence L, Bena J, Madhun NZ, Berber E, Elsheikh TM et al (2019) Real world comparison of Afirma GEC and GSC for the assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab Oct 26 pii: dgz099

  95. Angell TE, Wirth LJ, Cabanillas ME, Shindo ML, Cibas ES, Babiarz JE et al (2019) Analytical and clinical validation of expressed variants and fusions from the whole transcriptome of thyroid FNA samples. Front Endocrinol (Lausanne) 10:612

    Article  PubMed Central  Google Scholar 

  96. Chaudhary S, Hou Y, Shen R, Hooda S, Li Z (2016) Impact of the Afirma gene expression classifier result on the surgical management of thyroid nodules with category III/IV cytology and its correlation with surgical outcome. Acta Cytol 60:205–210

    Article  CAS  PubMed  Google Scholar 

  97. Abeykoon JP, Mueller L, Dong F, Chintakuntlawar AV, Paludo J, Mortada R (2016) The effect of implementing gene expression classifier on outcomes of thyroid nodules with indeterminate cytology. Horm Cancer 7:272–278

    Article  CAS  PubMed  Google Scholar 

  98. Nicholson KJ, Roberts MS, McCoy KL, Carty SE, Yip L (2019) Molecular testing versus diagnostic lobectomy in Bethesda III/IV thyroid nodules: a cost-effectiveness analysis. Thyroid 29:1237–1243

    Article  PubMed  PubMed Central  Google Scholar 

  99. Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B et al (2015) Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 100:2743–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Banizs AB, Silverman JF (2019) The utility of combined mutation analysis and microRNA classification in reclassifying cancer risk of cytologically indeterminate thyroid nodules. Diagn Cytopathol 47:268–274

    Article  PubMed  Google Scholar 

  101. Benjamin H, Schnitzer-Perlman T, Shtabsky A, VandenBussche CJ, Ali SZ, Kolar Z et al (2016) Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides. Cancer Cytopathol 124:711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lithwick-Yanai G, Dromi N, Shtabsky A, Morgenstern S, Strenov Y, Feinmesser M et al (2017) Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol 70:500–507

    Article  CAS  PubMed  Google Scholar 

  103. Partyka KL, Randolph ML, Lawrence KA, Cramer H, Wu HH (2018) Utilization of direct smears of thyroid fine-needle aspirates for ancillary molecular testing: a comparison of two proprietary testing platforms. Diagn Cytopathol 46:320–325

    Article  PubMed  Google Scholar 

  104. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z et al (2009) Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 94:2092–2098

    Article  CAS  PubMed  Google Scholar 

  105. Ohori NP, Nikiforova MN, Schoedel KE, LeBeau SO, Hodak SP, Seethala RR et al (2010) Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol 118:17–23

    Article  CAS  PubMed  Google Scholar 

  106. Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P et al (2010) Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab 95:1365–1369

    Article  CAS  PubMed  Google Scholar 

  107. Beaudenon-Huibregtse S, Alexander EK, Guttler RB, Hershman JM, Babu V, Blevins TC et al (2014) Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid 24:1479–1487

    Article  CAS  PubMed  Google Scholar 

  108. Eszlinger M, Krogdahl A, Münz S, Rehfeld C, Precht Jensen EM, Ferraz C et al (2014) Impact of molecular screening for point mutations and rearrangements in routine air-dried fine-needle aspiration samples of thyroid nodules. Thyroid 24:305–313

    Article  CAS  PubMed  Google Scholar 

  109. Eszlinger M, Böhme K, Ullmann M, Görke F, Siebolts U, Neumann A et al (2017) Evaluation of a 2-year routine application of molecular testing of thyroid fine-needle aspirations using a seven-gene panel in a primary referral setting in Germany. Thyroid 27:402–411

    Article  CAS  PubMed  Google Scholar 

  110. Bongiovanni M, Molinari F, Eszlinger M, Paschke R, Barizzi J, Merlo E et al (2015) Laser capture microdissection is a valuable tool in the preoperative molecular screening of follicular lesions of the thyroid:an institutional experience. Cytopathology 26:288–296

    Article  CAS  PubMed  Google Scholar 

  111. Censi S, Cavedon E, Bertazza L, Galuppini F, Watutantrige-Fernando S, De Lazzari P et al (2017) Frequency and significance of Ras, Tert promoter, and Braf mutations in cytologically indeterminate thyroid nodules: a monocentric case series at a tertiary-level endocrinology unit. Front Endocrinol (Lausanne) 8:273

    Article  Google Scholar 

  112. Macerola E, Rago T, Proietti A, Basolo F, Vitti P (2019) The mutational analysis in the diagnostic work-up of thyroid nodules: the real impact in a center with large experience in thyroid cytopathology. J Endocrinol Invest 42:157–166

    Article  CAS  PubMed  Google Scholar 

  113. Shen R, Liyanarachchi S, Li W, Wakely PE Jr, Saji M, Huang J et al (2012) MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid 22:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Santos MTD, Buzolin AL, Gama RR, Silva ECAD, Dufloth RM, Figueiredo DLA, Carvalho AL (2018) Molecular classification of thyroid nodules with indeterminate cytology: development and validation of a highly sensitive and specific new miRNA-based classifier test using fine-needle aspiration smear slides. Thyroid

  115. Mazeh H, Deutch T, Karas A, Bogardus KA, Mizrahi I, Gur-Wahnon D, et al (2018) Next-Generation Sequencing Identifies a Highly Accurate miRNA Panel That Distinguishes Well-Differentiated Thyroid Cancer from Benign Thyroid Nodules. Cancer Epidemiol Biomarker Cancer Epidemiol Biomarkers Prev 27:858-63

  116. Pagan M, Kloos RT, Lin CF, Travers KJ, Matsuzaki H, Tom EY et al (2016) The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes. BMC Bioinformatics 17(Suppl. 1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Lee YS, Lim YS, Lee JC, Wang SG, Park HY, Kim SY et al (2015) Differential expression levels of plasma-derived miR-146b and miR-155 in papillary thyroid cancer. Oral Oncol 51:77–83

    Article  CAS  PubMed  Google Scholar 

  118. Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F et al (2012) Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 97:2084–2092

    Article  CAS  PubMed  Google Scholar 

  119. Cantara S, Pilli T, Sebastiani G, Cevenini G, Busonero G, Cardinale S et al (2014) Circulating miRNA95 and miRNA190 are sensitive markers for the differential diagnosis of thyroid nodules in a caucasian population. J Clin Endocrinol Metab 99:4190–4198

    Article  CAS  PubMed  Google Scholar 

  120. Pilli T, Cantara S, Marzocchi C, Cardinale S, Santini C, Cevenini G et al (2017) Diagnostic value of circulating microRNA-95 and -190 in the differential diagnosis of thyroid nodules: a validation study in 1000 consecutive patients. Thyroid 27:1053–1057

    Article  CAS  PubMed  Google Scholar 

  121. Nikiforov YE, Sethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD et al (2016) Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol 2:1023–1029

    Article  PubMed  PubMed Central  Google Scholar 

  122. Brandler TC, Liu CZ, Cho M, Zhou F, Cangiarella J, Yee-Chang M et al (2018) Does noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) have a unique molecular profile? Am J Clin Pathol 150:451–460

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Ricerca Finalizzata program of Italian Ministry of Health, Rome (code: RF 2013-02354985) and by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Investigator Grant 2015, PRIN 2017YTWKWH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fugazzola.

Ethics declarations

Conflict of interest

on behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzza, M., Colombo, C., Pogliaghi, G. et al. Molecular markers for the classification of cytologically indeterminate thyroid nodules. J Endocrinol Invest 43, 703–716 (2020). https://doi.org/10.1007/s40618-019-01164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01164-w

Keywords

Navigation