Skip to main content

Advertisement

Log in

Antitumor activity of interferon-β1a in hormone refractory prostate cancer with neuroendocrine differentiation

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Type I interferons (IFN-α and IFN-β) are a class of cytokines that exert several biological activities, such as modulation of cell proliferation and differentiation and of the immune system. Although these cytokines interact with a common receptor complex, IFN-β showed a more potent antitumor activity than IFN-α in several tumor models. New recombinant human IFN-β products, such as IFN-β1a and IFN-β1b, have been produced in order to improve the stability and bioavailability of natural IFN-β. In this report, we analyzed the effects of recombinant IFN-β1a on the cell proliferation of two human androgen-resistant prostate cancer cell lines with neuroendocrine differentiation (DU-145, PC-3) and related mechanisms of action.

Methods

The effects of IFN-β1a on the cell growth proliferation, cell cycle, and apoptosis have been evaluated in DU-145 and PC-3 cells through MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. Moreover, the expression of neuron-specific enolase (NSE), cleaved caspase-3, caspase-8, and PARP was evaluated through Western blotting.

Results

IFN-β1a showed a significant anti-proliferative activity in both androgen-resistant cell lines. This effect was related to cell cycle perturbation and induction in apoptosis, as shown by flow cytometric analysis, the activation of caspase-3 and caspase-8 and PARP cleavage during incubation with IFN-β1a. Moreover, this cytokine reduced the expression of NSE in both cell lines.

Conclusions

Recombinant IFN-β1a (Rebif) showed a potent in vitro anti-proliferative activity in androgen-resistant prostate cancer cells, and it could represent a promising tool for the treatment of this tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Katzenwadel A, Wolf P (2015) Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett 367:12–17. doi:10.1016/j.canlet.2015.06.021

    Article  CAS  PubMed  Google Scholar 

  2. Graham L, Schweizer MT (2016) Targeting persistent androgen receptor signaling in castration-resistant prostate cancer. Med Oncol 33:44. doi:10.1007/s12032-016-0759-3

    Article  PubMed  Google Scholar 

  3. Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, Piscitelli R, Quagliuolo L, Caraglia M (2015) Gene interference strategies as a new tool for the treatment of prostate cancer. Endocr 49:588–605. doi:10.1007/s12020-015-0629-3

    Article  CAS  Google Scholar 

  4. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–2644. doi:10.1146/annurev.biochem.67.1.227

    Article  CAS  PubMed  Google Scholar 

  5. Pasquali S, Mocellin S (2010) The anticancer face of interferon alpha (IFN-alpha): from biology to clinical results, with a focus on melanoma. Curr Med Chem 17:3327–3336. doi:10.2174/092986710793176393

    Article  CAS  PubMed  Google Scholar 

  6. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16:131–144. doi:10.1038/nrc.2016.14

    Article  PubMed  Google Scholar 

  7. Ferrantini M, Capone I, Belardelli F (2007) Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89:884–893. doi:10.1016/j.biochi.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  8. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC (2010) Antiproliferative properties of type I and type II interferon. Pharmaceuticals 3:994–1015. doi:10.3390/ph3040994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang SF, Kim SJ, Lee AT, Karashima T, Bucana C, Kedar D, Sweeney P, Mian B, Fan D, Shepherd D, Fidler IJ, Dinney CP, Killion JJ (2002) Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel. Cancer Res 62:5720–5726

    CAS  PubMed  Google Scholar 

  10. Hobeika AC, Subramaniam PS, Johnson HM (1997) IFN alpha induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells. Oncogene 14:1165–1170. doi:10.1038/sj.onc.1200939

    Article  CAS  PubMed  Google Scholar 

  11. Li YI, Wang QZ, Zhang TT., Li L, Wang JP, Ding GF, He DL (2014) Low dose of interferon-α improves the clinical outcomes of docetaxel in patients with castration-resistant prostate cancer: a pilot study. Oncol Lett 7:125–130. doi:10.3892/ol.2013.1653

    CAS  PubMed  Google Scholar 

  12. Kramer G, Stein GE, Sokol P, Handisurya A, Klingler HC, Maier U, Foldy M, Marberger M (2001) Local intratumoral tumor necrosis factor-alpha and systemic IFN-alpha 2b in patients with locally advanced prostate cancer. J Interferon Cytokine Res 21:475–484. doi:10.1089/10799900152434349

    Article  CAS  PubMed  Google Scholar 

  13. Kuratsukuri K, Nishisaka N, Jones RF, Wang CY, Haas GP (2000) Clinical trials of immunotherapy for advanced prostate cancer. Urol Oncol 5:265–273. doi:10.1016/S1078-1439(00)00086-7

    Article  CAS  PubMed  Google Scholar 

  14. Di Paola RS, Chen YH, Stein M, Vaughn D, Patrick-Miller L, Carducci M, Roth B, White E, Wilding G (2010) A randomized phase II trial of mitoxantrone, estramustine and vinorelbine or bcl-2 modulation with 13-cis retinoic acid, interferon and paclitaxel in patients with metastatic castrate-resistant prostate cancer: ECOG 3899. J Transl Med 24:20. doi:10.1186/1479-5876-8-20

    Article  Google Scholar 

  15. Emerson L, Morales A (2009) Intralesional recombinant alpha-interferon for localized prostate cancer: a pilot study with follow-up of >10 years. BJU Int 104:1068–1070. doi:10.1111/j.1464-410X.2009.08482.x

    Article  CAS  PubMed  Google Scholar 

  16. van Haelst-Pisani CM, Richardson RL, Su J, Buckner JC, Hahn RG, Frytak S, Kvols LK, Burch PA (1992) A phase II study of recombinant human alpha-interferon in advanced hormonerefractory prostate cancer. Cancer 70:2310–2312. doi:10.1002/1097-0142(19921101)70:9<2310::AID-CNCR2820700916>3.0.CO;2-

    Article  PubMed  Google Scholar 

  17. Caraglia M, Dicitore A, Marra M, Castiglioni S, Persani L, Sperlongano P, Tagliaferri P, Abbruzzese A, Vitale G (2013) Type I interferons: ancient peptides with still under-discovered anti-cancer properties. Protein Pept Lett 20:412–423. doi:10.2174/0929866511320040005

    CAS  PubMed  Google Scholar 

  18. Dicitore A, Caraglia M, Gaudenzi G, Manfredi G, Amato B, Mari D, Persani L, Arra C, Vitale G (2014) Type I interferon-mediated pathway interacts with peroxisome proliferator activated receptor-γ (PPAR-γ): at the cross-road of pancreatic cancer cell proliferation. Biochim Biophys Acta 1845:42–52. doi:10.1016/j.bbcan.2013.11.003

    CAS  PubMed  Google Scholar 

  19. Vitale G, van Koetsveld PM, de Herder WW, van der Wansem K, Janssen JA, Colao A, Lombardi G, Lamberts SW, Hofland LJ (2009) Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells. Am J Physiol Endocrinol Metab 296:E559–566. doi:10.1152/ajpendo.90770.2008

    Article  CAS  PubMed  Google Scholar 

  20. Erdmann J, Vitale G, van Koetsveld PM, Croze E, Sprij-Mooij DM, Hofland LJ, van Eijck CH (2011) Effects of interferons α/β on the proliferation of human micro- and macrovascular endothelial cells. J Interferon Cytokine Res 31:451–458. doi:10.1089/jir.2009.0103

    Article  CAS  PubMed  Google Scholar 

  21. van Koetsveld PM, Vitale G, de Herder WW, Feelders RA, van der Wansem K, Waaijers M, van Eijck CH, Speel EJ, Croze E, van der Lely AJ, Lamberts SW, Hofland LJ (2006) Potent inhibitory effects of type I interferons on human adrenocortical carcinoma cell growth. J Clin Endocrinol Metab 91:4537–4543. doi:10.1210/jc.2006-0620

    Article  PubMed  Google Scholar 

  22. Vitale G, de Herder WW, van Koetsveld PM, Waaijers M, Schoordijk W, Croze E, Colao A, Lamberts SW, Hofland LJ (2006) IFN-beta is a highly potent inhibitor of gastroenteropancreatic neuroendocrine tumor cell growth in vitro. Cancer Res 66:554–562. doi:10.1158/0008-5472.CAN-05-3043

    Article  CAS  PubMed  Google Scholar 

  23. Vitale G, van Eijck CH, van Koetsveld Ing PM, Erdmann JI, Speel EJ, van der Wansem Ing K, Mooij DM, Colao A, Lombardi G, Croze E, Lamberts SW, Hofland LJ (2007) Type I interferons in the treatment of pancreatic cancer: mechanisms of action and role of related receptors. Ann Surg 246:259–268. doi:10.1097/01.sla.0000261460.07110.f2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M, Arancia G, Castiglioni S, Maroni P, Bendinelli P, Piccoletti R, van Koetsveld PM, Cavagnini F, Budillon A, Abbruzzese A, Hofland LJ, Caraglia M (2012) The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv 30:169–184. doi:10.1016/j.biotechadv.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Lipiäinen T, Peltoniemi M, Sarkhel S, Yrjönen T, Vuorela H, Urtti A, Juppo A (2015) Formulation and stability of cytokine therapeutics. J Pharm Sci 104:307–326. doi:10.1002/jps.24243

    Article  PubMed  Google Scholar 

  26. Scagnolari C, Selvaggi C, Di Biase E, Fraulo M, Dangond F, Antonelli G (2014) In vitro assessment of the biologic activity of Interferon beta formulations used for the treatment of relapsing multiple sclerosis. J Immunoassay Immunochem 35:288–299. doi:10.1080/15321819.2013.848815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rabbani SA, Arakelian A, Farookhi R (2013) LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo. Cancer Med 2:625–635. doi:10.1002/cam4.111

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dicitore A, Grassi ES, Caraglia M, Borghi MO, Gaudenzi G, Hofland LJ, Persani L, Vitale G (2016) The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines. Endocr 51:101–112. doi:10.1007/s12020-015-0597-7

    Article  CAS  Google Scholar 

  29. Shou J, Soriano R, Hayward SW, Cunha GR, Williams PM, Gao WQ (2002) Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression. Proc Natl Acad Sci USA 99:2830–2835. doi:10.1073/pnas.052705299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong Z, Greene G, Pettaway C, Dinney CPN, Eue I, Lu W, Bucana CD, Balbay MD, Bielenberg D, Fidler IJ (1999) Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-b1. Cancer Res 59:872–879

    CAS  PubMed  Google Scholar 

  31. Benimetskaya L, Wittenberger T, Stein CA, Hofmann HP, Weller C, Lai JC, Miller P, Gekeler V (2004) Changes in gene expression induced by phosphorothioate oligodeoxynucleotides (including G3139) in PC3 prostate carcinoma cells are recapitulated at least in part by treatment with interferon-beta and -gamma. Clin Cancer Res 10:3678–3688. doi:10.1158/1078-0432.CCR-03-0569

    Article  CAS  PubMed  Google Scholar 

  32. Chin AI, Miyahira AK, Covarrubias A, Teague J, Guo B, Dempsey PW, Genhong C (2010) Toll-like receptor 3-mediated suppression of TRAMP prostate cancer demonstrates the critical role of type I interferons in tumor immune surveillance. Cancer Res 70:2595–2603. doi:10.1158/0008-5472.CAN-09-1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sica G, Dell’Acqua G, Iacopino F, Fattorossi A, Marchetti P, van der Kwast TH, Pavone-Macaluso M (1994) Androgen receptors and hormone sensitivity of a human prostatic cancer cell line (PC-3) are modulated by natural beta-interferon. Urol Res 22:33–38

    Article  CAS  PubMed  Google Scholar 

  34. Yang CH, Yue J, Fan M, Pfeffer LM (2010) Interferon induces miR-21 through a STAT3-dependent pathway as a suppressive negative feedback on interferon-induced apoptosis. Cancer Res 70:8108–8116. doi:10.1158/0008-5472.CAN-10-2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheon HJ, Borden EC, Stark GR (2014) Interferons and their stimulated genes in the tumor microenvironment. Semin Oncol 41:156–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sica G, Fabbroni L, Castagnetta L, Cacciatore M, Pavone-Macaluso M (1989) Antiproliferative effect of interferons on human prostate carcinoma cell lines. Urol Res 17:111–115

    Article  CAS  PubMed  Google Scholar 

  37. Basrawala Z, Alimirah F, Xin H, Mohideen N, Campbell SC, Flanigan RC, Choubey D (2006) Androgen receptor levels are increased by interferons in human prostate stromal and epithelial cells. Oncogene 25:2812–2817. doi:10.1038/sj.onc.1209304

    Article  CAS  PubMed  Google Scholar 

  38. Sica G, Fabbroni L, Dell’Acqua G, Iacopino F, Marchetti P, Cacciatore M, Pavone-Macaluso M (1991) Natural beta-interferon and androgen receptors in prostatic cancer cells. Urol Int 46:159–162

    Article  CAS  PubMed  Google Scholar 

  39. Bulbul MA, Huben RP, Murphy GP (1986) Interferon-beta treatment of metastatic prostate cancer. J Surg Oncol 33:231–233

    Article  CAS  PubMed  Google Scholar 

  40. Satoh YI, Kasama K, Kajita A, Shimizu H, Ida N (1984) Different pharmacokinetics between natural and recombinant human interferon beta in rabbits. J Interferon Res 4:411–422

    Article  CAS  PubMed  Google Scholar 

  41. Cao G, Su J, Lu W, Zhang F, Zhao G, Marteralli D, Dong Z (2001) Adenovirus-mediated interferon-beta gene therapy suppresses growth and metastasis of human prostate cancer in nude mice. Cancer Gene Ther 8:497–505. doi:10.1038/sj.cgt.7700333

    Article  CAS  PubMed  Google Scholar 

  42. Lee J, Wang A, Hu Q, Lu S, Dong Z (2006) Adenovirus-mediated interferon-beta gene transfer inhibits angiogenesis in and progression of orthotopic tumors of human prostate cancer cells in nude mice. Int J Oncol 29:1405–1412. doi:10.3892/ijo.29.6.1405

    CAS  PubMed  Google Scholar 

  43. Borden EC, Rinehart JJ, Storer BE, Trump DL, Paulnock DM, Teitelbaum AP (1990) Biological and clinical effects of interferon-ßser at two doses. J Interferon Res 10:559–570. doi:10.1089/jir.1990.10.559

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein D, O’Leary M, Mitchen J, Borden EC, Wilding G (1991) Effects of interferon beta ser and transforming growth factor beta on prostatic cell lines. J Urol 146:1173–1177

    CAS  PubMed  Google Scholar 

  45. Kagawa Y, Takasaki S, Utsumi J, Hosoi K, Shimizu H, Kochibe N, Kobata (1988) A Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J Biol Chem 263:17508–17515

    CAS  PubMed  Google Scholar 

  46. Torosantucci R, Sharov VS, van Beers M, Brinks V, Sch¨oneich C, Jiskoot W (2013) Identification of oxidation sites and covalent crosslinks in metal catalyzed oxidized interferon beta-1a: potential implications for protein aggregation and immunogenicity. Mol Pharm 10:2311–2322. doi:10.1021/mp300665u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Beers MM, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W (2011) Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res 28:2393–2402. doi:10.1007/s11095-011-0451-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Govindappa K, Sathish J, Park K, Kirkham J, Pirmohamed M (2015) Development of interferon beta-neutralising antibodies in multiple sclerosis–a systematic review and meta-analysis. Eur J Clin Pharmacol 71:1287–1298. doi:10.1007/s00228-015-1921-0

    Article  CAS  PubMed  Google Scholar 

  49. Angelucci C, Iacopino F, Ferracuti S, Urbano R, Sica G (2007) Recombinant human IFN-beta affects androgen receptor level, neuroendocrine differentiation, cell adhesion, and motility in prostate cancer cells. J Interferon Cytokine Res 27:643–652. doi:10.1089/jir.2006.0120

    Article  CAS  PubMed  Google Scholar 

  50. Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ (2011) Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30:1868–1879. doi:10.1038/onc.2010.560

    Article  CAS  PubMed  Google Scholar 

  51. Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X (2010) The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 23:162. doi:10.1186/1476-4598-9-162

    Article  Google Scholar 

  52. Reuss R (2013) PEGylated interferon beta-1a in the treatment of multiple sclerosis—an update. Biologics 7:131–138. doi:10.2147/BTT.S29948.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hegen H, Auer M, Deisenhammer F (2015) Pharmacokinetic considerations in the treatment of multiple sclerosis with interferon-β. Expert Opin Drug Metab Toxicol 11:1803–1819. doi:10.1517/17425255.2015.1094055

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of Education, University and Research (FIRB RBAP11884 M) to GV and MC. The study was partially supported by funds of the Ricerca Corrente of Istituto Auxologico Italiano, Milan, Italy (code: 05C205_2012).

Funding

This study was funded by the Italian Ministry of Education, Research and University (grant number: FIRB RBAP11884 M). The study was partially supported by funds of the Ricerca Corrente of Istituto Auxologico Italiano, Milan, Italy (code: 05C205_2012) to GV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vitale.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed Consent was not required as no human or animals were involved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dicitore, A., Grassi, E.S., Borghi, M.O. et al. Antitumor activity of interferon-β1a in hormone refractory prostate cancer with neuroendocrine differentiation. J Endocrinol Invest 40, 761–770 (2017). https://doi.org/10.1007/s40618-017-0631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0631-0

Keywords

Navigation