Skip to main content
Log in

A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Familial neurohypophyseal diabetes insipidus (FNDI) is a rare, autosomal dominant, inherited disorder which is characterized by severe polydipsia and polyuria generally presenting in early childhood. In the present study, we aimed to analyze the AVP gene in a Turkish family with FNDI.

Methods

Four patients with neurohypophyseal diabetes insipidus and ten healthy members of the family were studied. Diabetes insipidus was diagnosed by the water deprivation test in affected family members. Mutation analysis was performed by sequencing the whole coding region of AVP-NPII gene using DNA isolated from peripheral blood samples.

Results

Urine osmolality was low (<300 mOsm/kg) during water deprivation test, and an increase more than 50 % in urine osmolality and recovery of the symptoms were observed by the administration of desmopressin in all patients. Plasma copeptin levels were lower than expected according to plasma osmolality. Pituitary MRI revealed partial empty sella with a bright spot in index patient and a normal neurohypophysis in the other affected subjects. Genetic screening revealed a novel, heterozygous mutation designated as c.-3A>C in all patients.

Conclusion

c.-3A>C mutation in 5′UTR of AVP gene in this family might lead to the truncation of signal peptide, aggregation of AVP in the cytoplasm instead of targeting in the endoplasmic reticulum, thereby could disrupt AVP secretion without causing neuronal cytotoxicity, which might explain the presence of bright spot. The predicted effect of this mutation should be investigated by further in vitro molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Christensen JH, Siggaard C, Corydon TJ, Robertson GL, Gregersen N, Bolund L, Rittig S (2004) Differential cellular handling of defective arginine vasopressin (AVP) prohormones in cells expressing mutations of the AVP gene associated with autosomal dominant and recessive familial neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 89(9):4521–4531. doi:10.1210/jc.2003-031813

    Article  CAS  PubMed  Google Scholar 

  2. Mohr E, Hillers M, Ivell R, Haulica ID, Richter D (1985) Expression of the vasopressin and oxytocin genes in human hypothalami. FEBS Lett 193(1):12–16

    Article  CAS  PubMed  Google Scholar 

  3. Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin–neurophysin II precursor. Nature 295(5847):299–303

    Article  CAS  PubMed  Google Scholar 

  4. Riddell DC, Mallonee R, Phillips JA, Parks JS, Sexton LA, Hamerton JL (1985) Chromosomal assignment of human sequences encoding arginine vasopressin–neurophysin II and growth hormone releasing factor. Somat Cell Mol Genet 11(2):189–195

    Article  CAS  PubMed  Google Scholar 

  5. Schmale H, Ivell R, Breindl M, Darmer D, Richter D (1984) The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J 3(13):3289–3293

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Acher R, Chauvet J, Rouille Y (2002) Dynamic processing of neuropeptides: sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport. J Mol Neurosci MN 18(3):223–228. doi:10.1385/JMN:18:3:223

    Article  CAS  PubMed  Google Scholar 

  7. Ito M, Mori Y, Oiso Y, Saito H (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Investig 87(2):725–728. doi:10.1172/JCI115052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN (2014) The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133(1):1–9. doi:10.1007/s00439-013-1358-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fenske W, Allolio B (2012) Clinical review: current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J Clin Endocrinol Metab 97(10):3426–3437. doi:10.1210/jc.2012-1981

    Article  CAS  PubMed  Google Scholar 

  10. Rittig S, Robertson GL, Siggaard C, Kovacs L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin–neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58(1):107–117

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  12. Pedersen AG, Nielsen H (1997) Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol 5:226–233

    CAS  PubMed  Google Scholar 

  13. Czaczkes JW, Kleeman CR, Koenig M (1964) Physiologic studies of antidiuretic hormone by its direct measurement in human plasma. J Clin Investig 43:1625–1640. doi:10.1172/JCI105038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52(1):112–119. doi:10.1373/clinchem.2005.060038

    Article  CAS  PubMed  Google Scholar 

  15. Robertson GL, Mahr EA, Athar S, Sinha T (1973) Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Investig 52(9):2340–2352. doi:10.1172/JCI107423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fenske W, Quinkler M, Lorenz D, Zopf K, Haagen U, Papassotiriou J, Pfeiffer AF, Fassnacht M, Stork S, Allolio B (2011) Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome—revisiting the direct and indirect water deprivation tests. J Clin Endocrinol Metab 96(5):1506–1515. doi:10.1210/jc.2010-2345

    Article  CAS  PubMed  Google Scholar 

  17. Balanescu S, Kopp P, Gaskill MB, Morgenthaler NG, Schindler C, Rutishauser J (2011) Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J Clin Endocrinol Metab 96(4):1046–1052. doi:10.1210/jc.2010-2499

    Article  CAS  PubMed  Google Scholar 

  18. Morgenthaler NG, Struck J, Jochberger S, Dunser MW (2008) Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab TEM 19(2):43–49. doi:10.1016/j.tem.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  19. Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, Fujisawa I, Yamabe H (1993) Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 329(10):683–689. doi:10.1056/NEJM199309023291002

    Article  CAS  PubMed  Google Scholar 

  20. Cacciari E, Zucchini S, Carla G, Pirazzoli P, Cicognani A, Mandini M, Busacca M, Trevisan C (1990) Endocrine function and morphological findings in patients with disorders of the hypothalamo-pituitary area: a study with magnetic resonance. Arch Dis Child 65(11):1199–1202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gudinchet F, Brunelle F, Barth MO, Taviere V, Brauner R, Rappaport R, Lallemand D (1989) MR imaging of the posterior hypophysis in children. AJR Am J Roentgenol 153(2):351–354. doi:10.2214/ajr.153.2.351

    Article  CAS  PubMed  Google Scholar 

  22. Moses AM, Clayton B, Hochhauser L (1992) Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. AJNR Am J Neuroradiol 13(5):1273–1277

    CAS  PubMed  Google Scholar 

  23. Hannon MJ, Orr C, Moran C, Behan LA, Agha A, Ball SG, Thompson CJ (2012) Anterior hypopituitarism is rare and autoimmune disease is common in adults with idiopathic central diabetes insipidus. Clin Endocrinol 76(5):725–728. doi:10.1111/j.1365-2265.2011.04270.x

    Article  CAS  Google Scholar 

  24. Lee YW, Lee KW, Ryu JW, Mok JO, Ki CS, Park HK, Kim YJ, Kim SJ, Byun DW, Suh KI, Yoo MH, Shin HB, Lee YK, Kim CH (2008) Mutation of Glu78 of the AVP-NPII gene impairs neurophysin as a carrier protein for arginine vasopressin in a family with neurohypophyseal diabetes insipidus. Ann Clin Lab Sci 38(1):12–14

    CAS  PubMed  Google Scholar 

  25. Birkegaard C, Christensen JH, Falorni A, Marzotti S, Minarelli V, Gregersen N, Rittig S (2013) A novel variation in the AVP gene resulting in familial neurohypophyseal diabetes insipidus in a large Italian kindred. Pituitary 16(2):152–157. doi:10.1007/s11102-012-0392-x

    Article  CAS  PubMed  Google Scholar 

  26. De Angioletti M, Lacerra G, Sabato V, Carestia C (2004) Beta+ 45 G → C: a novel silent beta-thalassaemia mutation, the first in the Kozak sequence. Br J Haematol 124(2):224–231

    Article  PubMed  Google Scholar 

  27. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292

    Article  CAS  PubMed  Google Scholar 

  28. Christensen JH, Siggaard C, Corydon TJ, Robertson GL, Gregersen N, Bolund L, Rittig S (2004) Impaired trafficking of mutated AVP prohormone in cells expressing rare disease genes causing autosomal dominant familial neurohypophyseal diabetes insipidus. Clin Endocrinol 60(1):125–136

    Article  CAS  Google Scholar 

  29. Birk J, Friberg MA, Prescianotto-Baschong C, Spiess M, Rutishauser J (2009) Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum. J Cell Sci 122(Pt 21):3994–4002. doi:10.1242/jcs.051136

    Article  CAS  PubMed  Google Scholar 

  30. Russell TA, Ito M, Ito M, Yu RN, Martinson FA, Weiss J, Jameson JL (2003) A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J Clin Investig 112(11):1697–1706. doi:10.1172/JCI18616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yan Z, Hoffmann A, Kaiser EK, Grunwald WC Jr, Cool DR (2011) Misfolding of mutated vasopressin causes ER-retention and activation of ER-stress markers in Neuro-2a cells. Open Neuroendocrinol J 4:136–146. doi:10.2174/1876528901104010136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fujisawa I (2004) Magnetic resonance imaging of the hypothalamic-neurohypophyseal system. J Neuroendocrinol 16(4):297–302. doi:10.1111/j.0953-8194.2004.01183.x

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi M, Arima H, Ozaki N, Morishita Y, Hiroi M, Ozaki N, Nagasaki H, Kinoshita N, Ueda M, Shiota A, Oiso Y (2009) Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am J Physiol Regul Integr Comp Physiol 296(5):R1641–R1649. doi:10.1152/ajpregu.00034.2009

    Article  CAS  PubMed  Google Scholar 

  34. de Fost M, van Trotsenburg AS, van Santen HM, Endert E, van den Elzen C, Kamsteeg EJ, Swaab DF, Fliers E (2011) Familial neurohypophyseal diabetes insipidus due to a novel mutation in the arginine vasopressin–neurophysin II gene. Eur J Endocrinol 165(1):161–165. doi:10.1530/EJE-11-0048

    Article  PubMed  Google Scholar 

  35. DiMeglio LA, Gagliardi PC, Browning JE, Quigley CA, Repaske DR (2001) A missense mutation encoding cys(67) – > gly in neurophysin ii is associated with early onset autosomal dominant neurohypophyseal diabetes insipidus. Mol Genet Metab 72(1):39–44. doi:10.1006/mgme.2000.3117

    Article  CAS  PubMed  Google Scholar 

  36. Christensen JH, Siggaard C, Corydon TJ, deSanctis L, Kovacs L, Robertson GL, Gregersen N, Rittig S (2004) Six novel mutations in the arginine vasopressin gene in 15 kindreds with autosomal dominant familial neurohypophyseal diabetes insipidus give further insight into the pathogenesis. Eur J Hum Genet: EJHG 12(1):44–51. doi:10.1038/sj.ejhg.5201086

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The manuscript was edited for proper English language by a highly qualified native English speaking editor in Bezmialem Vakif University Professional English for Medical Purpose (BVUPSO-101-03/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ilhan.

Ethics declarations

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was conducted in compliance with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilhan, M., Tiryakioglu, N.O., Karaman, O. et al. A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus. J Endocrinol Invest 39, 285–290 (2016). https://doi.org/10.1007/s40618-015-0357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0357-9

Keywords

Navigation