Skip to main content

Advertisement

Log in

Progress in Structural Biology of Solute Carriers

  • Evolutionary Developmental Biology (R Diogo and E Boyle, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The solute carrier (SLC) family is the second largest family of membrane proteins in the human genome which transports a broad spectrum of substrates such as neurotransmitters, amino acids, lipids, ions, and drugs across cellular membranes. Mutagenesis or malfunction of many SLCs can cause a wide range of disorders. In the past few years, the importance of the family member was raised in several contexts. The structural and functional studies of SLCs are gradually increasing recently. Here, the surge of SLC structural studies since 2017 were summarized in several aspects, which include the “very first” structures disclosed in certain SLC families; methodologies used in preparing SLC proteins, determination of structures, and functional assays; vital information obtained from SLC structures; the role of lipids; and some other unanswered questions. This review may provide valuable information for the direction of future structural investigation on solute carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hoglund PJ, Nordstrom KJ, Schioth HB, Fredriksson R. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol. 2011;28(4):1531–41. https://doi.org/10.1093/molbev/msq350.

    Article  CAS  PubMed  Google Scholar 

  2. Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Asp Med. 2013;34(2-3):95–107. https://doi.org/10.1016/j.mam.2012.12.009.

    Article  CAS  Google Scholar 

  3. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 2004;447(5):465–8. https://doi.org/10.1007/s00424-003-1192-y.

    Article  CAS  PubMed  Google Scholar 

  4. Schlessinger A, Matsson P, Shima JE, Pieper U, Yee SW, Kelly L, et al. Comparison of human solute carriers. Protein Sci. 2010;19(3):412–28. https://doi.org/10.1002/pro.320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schlessinger A, Yee SW, Sali A, Giacomini KM. SLC classification: an update. Clin Pharmacol Ther. 2013;94(1):19–23. https://doi.org/10.1038/clpt.2013.73.

    Article  CAS  PubMed  Google Scholar 

  6. Fredriksson R, Nordstrom KJ, Stephansson O, Hagglund MG, Schioth HB. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 2008;582(27):3811–6. https://doi.org/10.1016/j.febslet.2008.10.016.

    Article  CAS  PubMed  Google Scholar 

  7. . Cesar-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, et al. A call for systematic research on solute carriers. Cell. 2015;162(3):478–87. https://doi.org/10.1016/j.cell.2015.07.022This work summerzied the importance of SLCs and their implications to human diseases and therapeutics, and raised attetion of research on SLCs.

    Article  CAS  PubMed  Google Scholar 

  8. Williams AJ, Harland L, Groth P, Pettifer S, Chichester C, Willighagen EL, et al. Open PHACTS: semantic interoperability for drug discovery. Drug Discov Today. 2012;17(21-22):1188–98. https://doi.org/10.1016/j.drudis.2012.05.016.

    Article  PubMed  Google Scholar 

  9. Consortium STD, Williams AL, Jacobs SB, Moreno-Macias H, Huerta-Chagoya A, Churchhouse C, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506(7486):97–101. https://doi.org/10.1038/nature12828.

    Article  CAS  Google Scholar 

  10. Robert SM, Sontheimer H. Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci. 2014;71(10):1839–54. https://doi.org/10.1007/s00018-013-1521-z.

    Article  CAS  PubMed  Google Scholar 

  11. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38(1):73–84. https://doi.org/10.1002/ana.410380114.

    Article  CAS  PubMed  Google Scholar 

  12. Pilc A, Wieronska JM, Skolnick P. Glutamate-based antidepressants: preclinical psychopharmacology. Biol Psychiatry. 2013;73(12):1125–32. https://doi.org/10.1016/j.biopsych.2013.01.021.

    Article  CAS  PubMed  Google Scholar 

  13. Winter N, Kovermann P, Fahlke C. A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain. 2012;135(Pt 11):3416–25. https://doi.org/10.1093/brain/aws255.

    Article  PubMed  Google Scholar 

  14. Choi KD, Jen JC, Choi SY, Shin JH, Kim HS, Kim HJ, et al. Late-onset episodic ataxia associated with SLC1A3 mutation. J Hum Genet. 2017;62(3):443–6. https://doi.org/10.1038/jhg.2016.137.

    Article  CAS  PubMed  Google Scholar 

  15. Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na(+) -coupled SLC4 transporters in health and disease. Pflugers Arch. 2014;466(8):1501–16. https://doi.org/10.1007/s00424-014-1448-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev. 2013;93(2):803–959. https://doi.org/10.1152/physrev.00023.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, de Cid R, et al. Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet. 1999;21(3):293–6. https://doi.org/10.1038/6809.

    Article  CAS  PubMed  Google Scholar 

  18. Calonge MJ, Gasparini P, Chillaron J, Chillon M, Gallucci M, Rousaud F, et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994;6(4):420–5. https://doi.org/10.1038/ng0494-420.

    Article  CAS  PubMed  Google Scholar 

  19. Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Asp Med. 2013;34(2-3):494–515. https://doi.org/10.1016/j.mam.2012.07.009.

    Article  CAS  Google Scholar 

  20. Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, et al. Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol. 2003;549(Pt 1):3–19. https://doi.org/10.1113/jphysiol.2003.039818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. . Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol. 2017;34(1-2):1–32. https://doi.org/10.1080/09687688.2018.1448123The structures, folding, and transport mechanism of SLCs were summarized in great detail.

    Article  CAS  PubMed  Google Scholar 

  22. Colas C, Ung PM, Schlessinger A. SLC Transporters: structure, function, and drug discovery. Medchemcomm. 2016;7(6):1069–81. https://doi.org/10.1039/C6MD00005C.

    Article  CAS  PubMed  Google Scholar 

  23. Perez C, Ziegler C. Mechanistic aspects of sodium-binding sites in LeuT-like fold symporters. Biol Chem. 2013;394(5):641–8. https://doi.org/10.1515/hsz-2012-0336.

    Article  CAS  PubMed  Google Scholar 

  24. Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys. 2015;44:257–83. https://doi.org/10.1146/annurev-biophys-060414-033901.

    Article  CAS  PubMed  Google Scholar 

  25. Kazmier K, Claxton DP, McHaourab HS. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol. 2017;45:100–8. https://doi.org/10.1016/j.sbi.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  26. Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858(7 Pt A):1507–32. https://doi.org/10.1016/j.bbamem.2016.03.030.

    Article  CAS  PubMed  Google Scholar 

  27. Cordat E, Reithmeier RA. Structure, function, and trafficking of SLC4 and SLC26 anion transporters. Curr Top Membr. 2014;73:1–67. https://doi.org/10.1016/B978-0-12-800223-0.00001-3.

    Article  CAS  PubMed  Google Scholar 

  28. Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature. 2017;544(7651):446–51. https://doi.org/10.1038/nature22064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garaeva AA, Oostergetel GT, Gati C, Guskov A, Paulino C, Slotboom DJ. Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat Struct Mol Biol. 2018;25(6):515–21. https://doi.org/10.1038/s41594-018-0076-y.

    Article  CAS  PubMed  Google Scholar 

  30. Yu X, Plotnikova O, Bonin PD, Subashi TA, McLellan TJ, Dumlao D, et al. Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. Elife. 2019;8:e48120. https://doi.org/10.7554/eLife.48120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. . Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, et al. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat Commun. 2018;9(1):900. https://doi.org/10.1038/s41467-018-03271-3This work determined the first mammalian sodium coupled acid–base transporter NBCe1 using cryo-EM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jungnickel KEJ, Parker JL, Newstead S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun. 2018;9(1):550. https://doi.org/10.1038/s41467-018-03066-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ehrnstorfer IA, Manatschal C, Arnold FM, Laederach J, Dutzler R. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family. Nat Commun. 2017;8:14033. https://doi.org/10.1038/ncomms14033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manatschal C, Pujol-Gimenez J, Poirier M, Reymond JL, Hediger MA, Dutzler R. Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds. Elife. 2019;8:e51913. https://doi.org/10.7554/eLife.51913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Chew TA, Orlando BJ, Zhang J, Latorraca NR, Wang A, Hollingsworth SA, et al. Structure and mechanism of the cation-chloride cotransporter NKCC1. Nature. 2019;572(7770):488–92. https://doi.org/10.1038/s41586-019-1438-2NKCC1 was presented as the first experimentally determined structure carrying a cytosolic regulatory domain in SLC12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Minhas GS, Newstead S. Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters. Proc Natl Acad Sci U S A. 2019;116(3):804–9. https://doi.org/10.1073/pnas.1813715116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bosshart PD, Kalbermatter D, Bonetti S, Fotiadis D. Mechanistic basis of L-lactate transport in the SLC16 solute carrier family. Nat Commun. 2019;10(1):2649. https://doi.org/10.1038/s41467-019-10566-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. . Zhang B, Jin Q, Xu L, Li N, Meng Y, Chang S, et al. Cooperative transport mechanism of human monocarboxylate transporter 2. Nat Commun. 2020;11(1):2429. https://doi.org/10.1038/s41467-020-16334-1This work described the first human l-lactate transporter structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leano JB, Batarni S, Eriksen J, Juge N, Pak JE, Kimura-Someya T, et al. Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol. 2019;17(5):e3000260. https://doi.org/10.1371/journal.pbio.3000260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 2017;27(8):1020–33. https://doi.org/10.1038/cr.2017.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C, Sun B, Zhang X, Huang X, Zhang M, Guo H, et al. Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nat Plants. 2019;5(11):1184–93. https://doi.org/10.1038/s41477-019-0538-1.

    Article  CAS  PubMed  Google Scholar 

  42. Wright NJ, Lee SY. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat Struct Mol Biol. 2019;26(7):599–606. https://doi.org/10.1038/s41594-019-0245-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parker JL, Corey RA, Stansfeld PJ, Newstead S. Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer. Nat Commun. 2019;10(1):4657. https://doi.org/10.1038/s41467-019-12673-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • Parker JL, Newstead S. Structural basis of nucleotide sugar transport across the Golgi membrane. Nature. 2017;551(7681):521–4. https://doi.org/10.1038/nature24464This bacteria Vrg4 was reported to be the first structure in NST family, providing important clues for understanding nucleotide sugar recognition and transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahuja S, Whorton MR. Structural basis for mammalian nucleotide sugar transport. Elife. 2019;8:e45221. https://doi.org/10.7554/eLife.45221.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lei HT, Ma J, Sanchez Martinez S, Gonen T. Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat Struct Mol Biol. 2018;25(6):522–7. https://doi.org/10.1038/s41594-018-0072-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guskov A, Jensen S, Faustino I, Marrink SJ, Slotboom DJ. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat Commun. 2016;7:13420. https://doi.org/10.1038/ncomms13420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jensen S, Guskov A, Rempel S, Hanelt I, Slotboom DJ. Crystal structure of a substrate-free aspartate transporter. Nat Struct Mol Biol. 2013;20(10):1224–6. https://doi.org/10.1038/nsmb.2663.

    Article  CAS  PubMed  Google Scholar 

  49. Yernool D, Boudker O, Jin Y, Gouaux E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature. 2004;431(7010):811–8. https://doi.org/10.1038/nature03018.

    Article  CAS  PubMed  Google Scholar 

  50. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature. 2007;445(7126):387–93. https://doi.org/10.1038/nature05455.

    Article  CAS  PubMed  Google Scholar 

  51. Reyes N, Ginter C, Boudker O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature. 2009;462(7275):880–5. https://doi.org/10.1038/nature08616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carey DJ, Sommers LW, Hirschberg CB. CMP-N-acetylneuraminic acid: isolation from and penetration into mouse liver microsomes. Cell. 1980;19(3):597–605. https://doi.org/10.1016/s0092-8674(80)80036-5.

    Article  CAS  PubMed  Google Scholar 

  53. Hirschberg CB, Robbins PW, Abeijon C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1998;67:49–69. https://doi.org/10.1146/annurev.biochem.67.1.49.

    Article  CAS  PubMed  Google Scholar 

  54. Luhn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet. 2001;28(1):69–72. https://doi.org/10.1038/ng0501-69.

    Article  CAS  PubMed  Google Scholar 

  55. Martinez-Duncker I, Dupre T, Piller V, Piller F, Candelier JJ, Trichet C, et al. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood. 2005;105(7):2671–6. https://doi.org/10.1182/blood-2004-09-3509.

    Article  CAS  PubMed  Google Scholar 

  56. Descoteaux A, Luo Y, Turco SJ, Beverley SM. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995;269(5232):1869–72. https://doi.org/10.1126/science.7569927.

    Article  CAS  PubMed  Google Scholar 

  57. Nishikawa A, Poster JB, Jigami Y, Dean N. Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J Bacteriol. 2002;184(1):29–42. https://doi.org/10.1128/jb.184.1.29-42.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lubke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet. 2001;28(1):73–6. https://doi.org/10.1038/ng0501-73.

    Article  CAS  PubMed  Google Scholar 

  59. Ye ZY, Li DP, Byun HS, Li L, Pan HL. NKCC1 upregulation disrupts chloride homeostasis in the hypothalamus and increases neuronal activity-sympathetic drive in hypertension. J Neurosci. 2012;32(25):8560–8. https://doi.org/10.1523/JNEUROSCI.1346-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, et al. Molecular basis of ligand recognition and transport by glucose transporters. Nature. 2015;526(7573):391–6. https://doi.org/10.1038/nature14655.

    Article  CAS  PubMed  Google Scholar 

  61. Abe M, Noda Y, Adachi H, Yoda K. Localization of GDP-mannose transporter in the Golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer. J Cell Sci. 2004;117(Pt 23):5687–96. https://doi.org/10.1242/jcs.01491.

    Article  CAS  PubMed  Google Scholar 

  62. Bai XC, McMullan G, Scheres SH. How cryo-EM is revolutionizing structural biology. Trends Biochem Sci. 2015;40(1):49–57. https://doi.org/10.1016/j.tibs.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  63. Shoemaker SC, Ando N. X-rays in the cryo-electron microscopy era: structural biology’s dynamic future. Biochemistry. 2018;57(3):277–85. https://doi.org/10.1021/acs.biochem.7b01031.

    Article  CAS  PubMed  Google Scholar 

  64. Scalise M, Pochini L, Panni S, Pingitore P, Hedfalk K, Indiveri C. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids. 2014;46(11):2463–75. https://doi.org/10.1007/s00726-014-1808-x.

    Article  CAS  PubMed  Google Scholar 

  65. Olsen JA, Alam A, Kowal J, Stieger B, Locher KP. Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol. 2020;27(1):62–70. https://doi.org/10.1038/s41594-019-0354-3.

    Article  CAS  PubMed  Google Scholar 

  66. Parvin MN, Gerelsaikhan T, Turner RJ. Regions in the cytosolic C-terminus of the secretory Na(+)-K(+)-2Cl(−) cotransporter NKCC1 are required for its homodimerization. Biochemistry. 2007;46(33):9630–7. https://doi.org/10.1021/bi700881a.

    Article  CAS  PubMed  Google Scholar 

  67. Monette MY, Forbush B. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1). J Biol Chem. 2012;287(3):2210–20. https://doi.org/10.1074/jbc.M111.309211.

    Article  CAS  PubMed  Google Scholar 

  68. Warmuth S, Zimmermann I, Dutzler R. X-ray structure of the C-terminal domain of a prokaryotic cation-chloride cotransporter. Structure. 2009;17(4):538–46. https://doi.org/10.1016/j.str.2009.02.009.

    Article  CAS  PubMed  Google Scholar 

  69. van Hasselt PM, Ferdinandusse S, Monroe GR, Ruiter JP, Turkenburg M, Geerlings MJ, et al. Monocarboxylate transporter 1 deficiency and ketone utilization. N Engl J Med. 2014;371(20):1900–7. https://doi.org/10.1056/NEJMoa1407778.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu Q, Shao XM, Kao L, Azimov R, Weinstein AM, Newman D, et al. Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis. Am J Phys Cell Phys. 2013;305(4):C392–405. https://doi.org/10.1152/ajpcell.00044.2013.

    Article  CAS  Google Scholar 

  71. Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, et al. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 2015;22(10):803–8. https://doi.org/10.1038/nsmb.3091.

    Article  CAS  PubMed  Google Scholar 

  72. Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, et al. Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity. Nat Commun. 2016;7:11336. https://doi.org/10.1038/ncomms11336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M, Struwe WB, et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017;541(7637):421–4. https://doi.org/10.1038/nature20820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, Khelashvili G, et al. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature. 2015;518(7537):68–73. https://doi.org/10.1038/nature14158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wohlert D, Grotzinger MJ, Kuhlbrandt W, Yildiz O. Mechanism of Na(+)-dependent citrate transport from the structure of an asymmetrical CitS dimer. Elife. 2015;4:e09375. https://doi.org/10.7554/eLife.09375.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Coincon M, Uzdavinys P, Nji E, Dotson DL, Winkelmann I, Abdul-Hussein S, et al. Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters. Nat Struct Mol Biol. 2016;23(3):248–55. https://doi.org/10.1038/nsmb.3164.

    Article  CAS  PubMed  Google Scholar 

  77. Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. Mol Cell Ther. 2014;2:15. https://doi.org/10.1186/2052-8426-2-15.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, et al. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 2006;66(17):8847–57. https://doi.org/10.1158/0008-5472.CAN-06-0769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. More SS, Li S, Yee SW, Chen L, Xu Z, Jablons DM, et al. Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol Cancer Ther. 2010;9(4):1058–69. https://doi.org/10.1158/1535-7163.MCT-09-1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. El-Gebali S, Bentz S, Hediger MA, Anderle P. Solute carriers (SLCs) in cancer. Mol Asp Med. 2013;34(2-3):719–34. https://doi.org/10.1016/j.mam.2012.12.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. Di Xia for support and Dr. Lothar Esser for manuscript editing and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Bai.

Ethics declarations

Conflict of Interest

There is no conflict of interest to declare.

Human and Animal Rights and Informed Consent

This article contains no studies with human and animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evolutionary Developmental Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X. Progress in Structural Biology of Solute Carriers. Curr Mol Bio Rep 7, 9–19 (2021). https://doi.org/10.1007/s40610-021-00144-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-021-00144-5

Keywords

Navigation