Skip to main content
Log in

Enumeration of Multi-rooted Plane Trees

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We give closed form expressions for the numbers of multi-rooted plane trees with specified degrees of root vertices. This results in an infinite number of integer sequences, some of which are known to have an alternative interpretation. We also propose recursion relations for numbers of such trees as well as for the corresponding generating functions. Explicit expressions for the generating functions corresponding to plane trees having two and three roots are derived. As a by-product, we obtain a new binomial identity and a conjecture relating hypergeometric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

There was no data needed for this work, apart from the data available in the Online Encyclopedia of Integer Sequences (reference [31]) which is an online resource with free access. No other data is needed in order to check and reproduce the results of the paper.

References

  1. Mulase, M., Penkava, M.: Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(\overline{{\mathbb{Q} }}\). Mikio Sato: a great Japanese mathematician of the twentieth century. Asian J. Math. 2(4), 875–919 (1998)

    Article  MathSciNet  Google Scholar 

  2. Strebel, K.: Quadratic Differentials. Springer, Berlin (1984)

    Book  Google Scholar 

  3. Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27(1), 35–53 (1988)

    Article  MathSciNet  Google Scholar 

  4. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–473 (1974)

    Article  Google Scholar 

  5. Zvonkin, A.: Matrix integrals and map enumeration: an accessible introduction. Math. Comput. Model. 26(8–10), 281–304 (1997)

    Article  MathSciNet  Google Scholar 

  6. Grothendieck, A.: Esquisse d’un programme. (French) [Sketch of a program] With an English translation. In: London Mathematical Society Lecture Note Series, 242, Geometric Galois Actions, 1, 5-48, pp. 243–283, Cambridge University Press, Cambridge (1997)

  7. Kazarian, M.: KP hierarchy for Hodge integrals. Adv. Math. 221, 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  8. Zograf, P.: Enumeration of Grothendieck’s dessins and KP hierarchy. Int. Math. Res. Not. IMRN 24, 13533–13544 (2015)

    Article  MathSciNet  Google Scholar 

  9. Kazarian, M., Zograf, P.: Virasoro constraints and topological recursion for Grothendieck’s dessin counting. Lett. Math. Phys. 105(8), 1057–1084 (2015)

    Article  MathSciNet  Google Scholar 

  10. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)

    Article  MathSciNet  Google Scholar 

  11. Dumitrescu, O., Mulase, M., Safnuk, B., Sorkin, A.: The spectral curve of the Eynard–Orantin recursion via the Laplace transform. Contemp. Math. 593, 263–315 (2013)

  12. Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219(3), 932–951 (2008)

    Article  MathSciNet  Google Scholar 

  13. Dubrovin, B., Yang, D., Zagier, D.: Classical Hurwitz numbers and related combinatorics. Mosc. Math. J. 17(4), 601–633 (2017)

    Article  MathSciNet  Google Scholar 

  14. Tutte, W.T.: A census of planar maps. Can. J. Math. 15, 249–271 (1963)

    Article  MathSciNet  Google Scholar 

  15. Arquès, D., Béraud, J.-F.: Rooted maps on orientable surfaces, Riccati’s equation and continued fractions. Discrete Math. 215(1–3), 1–12 (2000)

    Article  MathSciNet  Google Scholar 

  16. Walsh, T.R.S., Lehman, A.B.: Counting rooted maps by genus. I. J. Combin. Theory Ser. B 13, 192–218 (1972)

    Article  MathSciNet  Google Scholar 

  17. Mulase, M.: The Laplace transform, mirror symmetry, and the topological recursion of Eynard–Orantin. In: Geometric Methods in Physics, Trends in Mathematics, pp. 127–142. Birkhäuser/Springer, Basel (2013)

  18. Gopala Krishna, K., Labelle, P., Shramchenko, V.: Feynman diagrams, ribbon graphs, and topological recursion of Eynard–Orantin. J. High Energy Phys. 2018(6), 162 (2018)

    Article  MathSciNet  Google Scholar 

  19. Arquès, D., Giorgetti, A.: Counting rooted maps on a surface. Theor. Comput. Sci. 234(1–2), 255–272 (2000)

    Article  MathSciNet  Google Scholar 

  20. Arquès, D., Giorgetti, A.: Énumération des cartes pointées sur une surface orientable de genre quelconque en fonction des nombres de sommets et de faces (French). [Counting rooted maps on an orientable surface of any genus by the number of vertices and faces]. J. Combin. Theory Ser. B 77(1), 1–24 (1999)

  21. Bender, E.A., Canfield, E.R., Richmond, L.B.: The asymptotic number of rooted maps on a surface II. Enumeration by vertices and faces. J. Combin. Theory Ser. A 63, 318–329 (1993)

    Article  MathSciNet  Google Scholar 

  22. Gopala Krishna, K., Labelle, P., Shramchenko, V.: Enumeration of N-rooted maps using quantum field theory. Nucl. Phys. B 936, 668–689 (2018)

    Article  MathSciNet  Google Scholar 

  23. Castro, E.R., Roditi, I.: A recursive enumeration of connected Feynman diagrams with an arbitrary number of external legs in the fermionic non-relativistic interacting gas. J. Phys. A Math. Theor. 52, 345401 (2019)

    Article  MathSciNet  Google Scholar 

  24. Castro, E.R., Roditi, I.: A combinatorial matrix approach for the generation of vacuum Feynman graphs multiplicities in theory. J. Phys. A Math. Theor. 51, 395202 (2019)

    Article  MathSciNet  Google Scholar 

  25. Castro, E.R., Roditi, I.: An exact solution method for the enumeration of Feynman diagrams. J. Phys. A Math. Theor. 53, 245203 (2020)

    Article  MathSciNet  Google Scholar 

  26. de Mello Koch, R., Ramgoolam, S.: Strings from Feynman graph counting: without large N. Phys. Rev. D 85, Article 026007 (2012)

    Article  Google Scholar 

  27. Prunotto, A., Alberico, W.M., Czerski, P.: Feynman diagrams and rooted maps. Open Phys. B 936, 149 (2018)

    Article  Google Scholar 

  28. Vera, A.S.: Double-logarithm in \({{\cal{N} }}=8\) supergravity: impact parameter description and mapping to 1-rooted ribbon graphs. J. High Energy Phys. 2019, 80 (2019)

    Article  MathSciNet  Google Scholar 

  29. Vera, A.S.: Double-logarithm in \({{\cal{N} }} \ge 4\) supergravity: weak gravity and Shapiro’s time delay. J. High Energy Phys. 2020, 163 (2020)

    Article  MathSciNet  Google Scholar 

  30. Vera, A.S.: High-energy scattering amplitudes in QED, QCD and supergravity. In: From the PAST to the FUTURE: The Legacy of Lev Lipatov, pp. 311–334, World Scientific Publishing Company (2021)

  31. Sloane, N.J.A.: The online encyclopedia of integer sequences. Published electronically at http://oeis.org. Accessed 15 Aug 2022

  32. Tutte, W.T.: A census of slicings. Can. J. Math. 14, 708–722 (1962)

    Article  MathSciNet  Google Scholar 

  33. Walsh, T.R.S., Lehman, A.B.: Counting rooted maps by genus. II. J. Combin. Theory Ser. B 13, 122–141 (1972)

    Article  MathSciNet  Google Scholar 

  34. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading (1994)

    Google Scholar 

  35. Pan, R., Remmel, B.: Paired patterns in lattice paths. In: Andrews, G.E., Krattenthaler, C., Krinik, A. (eds.) Lattice Path Combinatorics and Applications. Springer, Berlin (2019)

    Google Scholar 

  36. Cossali, G.E.: A common generating function for Catalan numbers and other integer sequences. J. Integer Seq. 6, Article 03.1.8 (2003)

    MathSciNet  Google Scholar 

  37. Bender, E.A., Canfield, E.R.: The number of rooted maps on an orientable surface. J. Combin. Theory Ser. B 53(2), 293–299 (1991)

    Article  MathSciNet  Google Scholar 

  38. Jackson, D.M., Visentin, T.I.: A character theoretic approach to embeddings of rooted maps in an orientable surface of given genus. Trans. Am. Math. Soc. 322, 343–363 (1990)

    MathSciNet  Google Scholar 

  39. Kazarian, M., Zograf, P.: Rationality of the enumeration of maps and hypermaps with respect to genus. St. Petersburg Math. J. 29(3), 439–445 (2018)

    Article  MathSciNet  Google Scholar 

  40. Maier, R.S.: Private communication (April 2020)

Download references

Acknowledgements

We are grateful to Professor Robert S. Maier for several illuminating exchanges on the properties of generalized hypergeometric functions and techniques to prove related identities. AG and VS gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada through a Discovery grant and from the Université de Sherbrooke. GK is thankful to Guido Carlet and to the Université de Bourgogne, IMB Dijon and IPaDEGAN for making an academic visit possible and to the Université de Sherbrooke where part of this work was done. We thank the anonymous referee for comments that helped us to improve our text and for pointing out important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilisa Shramchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Consider the following sums:

$$\begin{aligned} S_1 (n,r,s):= & {} \sum _{k=0}^n \frac{1}{k+r+1} \left( {\begin{array}{c}2n-2k+s\\ n-k\end{array}}\right) \, \left( {\begin{array}{c}2k+r\\ k\end{array}}\right) ,\\ S_2 (n,r,s):= & {} \sum _{k=0}^{n+s} \frac{1}{k+r+1} \left( {\begin{array}{c}2n-2k+s\\ n-k\end{array}}\right) \, \left( {\begin{array}{c}2k+r\\ k\end{array}}\right) ,\\ S_3 (n,r):= & {} \sum _{k=0}^{n} \frac{1}{n-k+1} \left( {\begin{array}{c}2n-2k\\ n-k\end{array}}\right) \, \left( {\begin{array}{c}2k+r\\ k\end{array}}\right) ,\\ S_4(n,r):= & {} \sum _{k=0}^n \frac{1}{n-k+1} \left( {\begin{array}{c}2n-2k+2\\ n-k\end{array}}\right) \, \left( {\begin{array}{c}2k+r\\ k\end{array}}\right) , \\ S_5 (n,r,s):= & {} \sum _{k=0}^{n} \left( {\begin{array}{c}2n-2k+s\\ n-k\end{array}}\right) \, \left( {\begin{array}{c}2k+r\\ k\end{array}}\right) ,\\ S_6(n,r,s,t):= & {} \sum _{k=0}^n \frac{r}{tk + r } \left( {\begin{array}{c}tk +r\\ k\end{array}}\right) \, \left( {\begin{array}{c}tn-tk+s\\ n-k\end{array}}\right) . \end{aligned}$$

Not all these sums appear in Sect. 7, but all are closely related to sums we needed and we include them for completeness.

The sum \(S_6\) is given in Equation (5.62) in Ref. [34]. It is understood that if the parameters considered are such that the factor \(tk+r\) is equal to zero for some value of k, then in that term the binomial factor \(\left( {\begin{array}{c}tk+r\\ k\end{array}}\right) \) is taken to cancel the factor \(\frac{1}{tk+r}\). With this convention, \(S_6\) is well defined for \(n \ge 0\) and \(r,s,t \in {\mathbb {Z}}\) and is equal to

$$\begin{aligned} S_6(n,r,s,t) = \left( {\begin{array}{c}tn+r+s\\ n\end{array}}\right) . \end{aligned}$$

The sums \(S_1\) to \(S_4\) can be obtained from \(S_6\) after appropriate changes of variables, with the following results:

$$\begin{aligned} S_1 (n,r,s)= & {} \frac{1}{r+1} \left( {\begin{array}{c}2n+r+s+1\\ n\end{array}}\right) , \\ S_2(n,r,s)= & {} \frac{1}{r+1} \left( {\begin{array}{c}2n+r+s+1\\ n+s\end{array}}\right) , \\ S_3(n,r)= & {} \left( {\begin{array}{c}2n+r+1\\ n\end{array}}\right) , \\ S_4(n,r)= & {} \left( {\begin{array}{c}2n+r+2\\ n\end{array}}\right) , \end{aligned}$$

where, in \(S_1\) and \(S_2\), n and r are integers satisfying \(n,r \ge 0\) and \(s \in {\mathbb {Z}}\) (the results are actually valid for a wider range of values, but the general results are not needed for this work). The conditions for \(S_3 \) and \(S_4\) are \( n\ge 0\) and \(r \in {\mathbb {Z}}\).

We could not find the sum \(S_5\) in closed form in the literature, as mentioned in the main text, see (34).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghabra, A.A., Krishna, K.G., Labelle, P. et al. Enumeration of Multi-rooted Plane Trees. Arnold Math J. 10, 35–64 (2024). https://doi.org/10.1007/s40598-023-00227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-023-00227-4

Keywords

Mathematics Subject Classification

Navigation