Skip to main content
Log in

Classification of Schubert Galois Groups in \(\textit{Gr}\,(4,9)\)

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We classify Schubert problems in the Grassmannian of 4-planes in 9-dimensional space by their Galois groups. Of the 31,806 essential Schubert problems in this Grassmannian, there are only 149 whose Galois group does not contain the alternating group. We identify the Galois groups of these 149—each is an imprimitive permutation group. These 149 fall into two families according to their geometry. This study suggests a possible classification of Schubert problems whose Galois group is not the full symmetric group, and is a first step toward the inverse Galois problem for Schubert calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://math.stanford.edu/~vakil/programs/galois.

  2. Available at https://www.math.tamu.edu/~sottile/research/stories/GIVIX.

  3. In [31], the term ‘reduced’ is used instead of ‘essential’.

  4. http://math.stanford.edu/~vakil/programs/galois.

  5. https://www.math.tamu.edu/~sottile/research/stories/GIVIX.

  6. https://www.math.tamu.edu/~sottile/research/stories/GIVIX.

  7. https://www.math.tamu.edu/~sottile/research/stories/GIVIX.

  8. https://www.math.tamu.edu/~sottile/research/stories/GIVIX.

  9. https://www.math.tamu.edu/~sottile/research/stories/GIVIX.

References

  1. Améndola, C., Lindberg, J., Rodriguez, J.I.: Solving parameterized polynomial systems with decomposable projections (2021). arXiv:1612.08807

  2. Becker, E., Marinari, M.G., Mora, T., Traverso, C.: The Shape of the Shape Lemma. In: Proceedings ISSAC-94, pp. 129–133 (1993)

  3. Bercovici, H., Collins, B., Dykema, K., Li, W.S., Timotin, D.: Intersections of Schubert varieties and eigenvalue inequalities in an arbitrary finite factor. J. Funct. Anal. 258(5), 1579–1627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brooks, C.J., Martín del Campo, A., Sottile, F.: Galois groups of Schubert problems of lines are at least alternating. Trans. Am. Math. Soc. 367, 4183–4206 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brysiewicz, T., Rodriguez, J.I., Sottile, F., Yahl, T.: Solving decomposable sparse systems. Numer. Algorithms 88 (2021)

  6. Byrnes, C.I., Stevens, P.K.: Global properties of the root-locus map. In: Feedback Control of Linear and Nonlinear Systems, Lecture Notes in Control and Inform. Sci., vol. 39, pp. 9–29. Springer, Berlin (1982)

    Chapter  Google Scholar 

  7. Cameron, P.J.: Permutation groups. In: London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Chasles, M.: Construction des coniques qui satisfont à cinque conditions. C. R. Acad. Sci. Paris 58, 297–308 (1864)

    Google Scholar 

  9. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-1—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2018)

  10. del Campo Martín, A., Sottile, F. Experimentation in the Schubert calculus. In: Naruse, H., Ikeda, T., Masuda, M., Tanisaki, T. (eds.) Schubert Calculus, Osaka 2012, Advanced Studies in Pure Mathematics, vol. 71. Mathematical Society of Japan, pp. 295–336 (2016)

  11. Ekedahl, T.: An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91. Birkhäuser, Boston, pp. 241–249 (1990)

  12. Esterov, A.: Galois theory for general systems of polynomial equations. Compos. Math. 155(2), 229–245 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulton, W.: Young tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  15. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46, 685–724 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hauenstein, J.D., Rodriguez, J.I., Sottile, F.: Numerical computation of Galois groups. Found. Comput. Math. 18, 867–890 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hauenstein, J.D., Hein, N., Sottile, F.: A primal-dual formulation for certifiable computations in Schubert calculus. Found. Comput. Math. 16(4), 941–963 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hein, N., Sottile, F.: A lifted square formulation for certifiable Schubert calculus. J. Symb. Comp. 79(part 3), 594–608 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hermite, C.: Sur les fonctions algébriques. CR Acad. Sci. (Paris) 32, 458–461 (1851)

    Google Scholar 

  20. Jacobson, Nathan: Basic Algebra I, 2nd edn. W.H. Freeman, New York (1985)

    MATH  Google Scholar 

  21. Jordan, C.: Traité des substitutions et des équations algébrique. Gauthier-Villars, Paris (1870)

    MATH  Google Scholar 

  22. Kleiman, S., Laksov, D.: Schubert calculus. Am. Math. Mon. 79, 1061–1082 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleiman, S.L.: The transversality of a general translate. Compos. Math. 28, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  24. Lang, S.: Algebra, 3rd edn. GTM, vol. 211. Springer, New York (2002)

  25. Leykin, A., Martín del Campo, A., Sottile, F., Vakil, R., Verschelde, J.: Numerical Schubert calculus via the Littlewood–Richardson homotopy algorithm. Math. Comput. 90, 1407–1433 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leykin, A., Sottile, F.: Galois groups of Schubert problems via homotopy computation. Math. Comput. 78(267), 1749–1765 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pirola, G.P., Schlesinger, E.: Monodromy of projective curves. J. Algebr. Geom. 14(4), 623–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schubert, H.: Anzahl-Bestimmungen für lineare Räume beliebiger Dimension. Acta Math. 8, 97–118 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  29. Scott, L.L.: Representations in characteristic \(p\). In: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37. Amer. Math. Soc., Providence, pp. 319–331 (1980)

  30. Sottile, F.: Enumerative geometry for the real Grassmannian of lines in projective space. Duke Math. J. 87(1), 59–85 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sottile, F., White, J.: Double transitivity of Galois groups in Schubert calculus of Grassmannians. Algebr. Geom. 2(4), 422–445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sottile, F., Williams, R., Ying, L.: Galois groups of composed Schubert problems, Facets of algebraic geometry. Vol. II, London Math. Soc. Lecture Note Ser., vol. 473. Cambridge Univ. Press, Cambridge, pp. 336–366 (2022)

  33. Sottile, F., Yahl, T.: Galois groups in enumerative geometry and applications (2021). arXiv:2108.07905

  34. Vakil, R.: A geometric Littlewood–Richardson rule. Ann. Math. (2) 164(2), 371–421 (2006). (Appendix A written with A. Knutson)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vakil, R.: Schubert induction. Ann. Math. (2) 164(2), 489–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Williams, R.L.: Restrictions on Galois groups of Schubert problems, Ph.D. thesis, Texas A &M University (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sottile.

Ethics declarations

Conflict of Interest

The authors have no financial or nonfinancial interests that are directly or indirectly related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Martín del Campo was supported in part by CONACyT under Grant Cátedra-1076. The work of Sottile was supported in part by the National Science Foundation under Grant DMS-1501370.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Campo, A.M., Sottile, F. & Williams, R.L. Classification of Schubert Galois Groups in \(\textit{Gr}\,(4,9)\). Arnold Math J. 9, 393–433 (2023). https://doi.org/10.1007/s40598-022-00221-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-022-00221-2

Keywords

Mathematics Subject Classification

Navigation