A Multi-Temporal Context-aware System for Competences Management

  • João H. Rosa
  • Jorge L. V. Barbosa
  • Marcos Kich
  • Lucas Brito


The evolution of computing technology and wireless networks has contributed to the miniaturization of mobile devices and their increase in power, providing services anywhere and anytime. In this scenario, applications have considered the user’s contexts to make decisions (Context Awareness). Context-aware applications have enabled new opportunities in different areas, for example, education, games and entertainment, commerce, and competence management. In this article, we present MultCComp, a multi-temporal context-aware system for competences management. The main system contribution is to take advantage of the workers’ present and past contexts to help them to develop their competences. We define as multi-temporal context awareness the joint use of workers’ present and past contexts to assist them in the development of their competences. We developed a prototype and conducted two experiments with it in an evaluation environment. The first experiment aimed to demonstrate the system functionalities. It consisted of two evaluation scenarios that were followed by two users. The second experiment focused on evaluating the acceptance of the system. It comprised a scenario that was followed by 21 users, who filled out a questionnaire at the end of the test.


Competences management Context awareness Contexts history 



This work was financed by Capes/Brazil (Coordination for the Improvement of Higher Education Personnel – http://www.capes.gov.br) and CNPq/Brazil (National Council for Scientific and Technological Development – http://www.cnpq.br). We would like to acknowledge both institutions for their support. In addition, we are grateful to Unisinos ( http://www.unisinos.br) and the Applied Computing Graduate Program for embracing this research. We also thank all volunteers who collaborated in the evaluation of the system. Finally, we would like to express our sincere thank to the reviewers for their valuable contributions to the final quality of this article.


  1. Barbosa, J. L. V., Hahn, R. M., Barbosa, D. N. F., & Saccol, A. I. d. C. Z. (2011). A ubiquitous learning model focused on learner interaction. International Journal of Learning Technology, 6, 62–83. doi: 10.1504/IJLT.2011.040150.CrossRefGoogle Scholar
  2. Barbosa, J. L. V., Barbosa, D. N. F., & Wagner, A. (2012). Learning in ubiquitous computing environments. International Journal of Information and Communication Technology Education, 8(3), 64–77. doi: 10.4018/jicte.2012070108. ISSN 1550-1876.CrossRefGoogle Scholar
  3. Barbosa, D. N. F., Barbosa, J. L. V., Bassani, P. B. S., Rosa, J., Martins, M., & Nino, C. (2013). Content management in a ubiquitous learning environment. International Journal of Computer Applications in Technology, 46(1), 24–35. doi: 10.1504/IJCAT.2013.051385. ISSN 0952–8091.CrossRefGoogle Scholar
  4. Beham, G., Kump, B., Ley, T., & Lindstaedt, S. (2010). Recommending knowledgeable people in a work-integrated learning system. Procedia Computer Science, 1(2), 2783–2792. doi: 10.1016/j.procs.2010.08.003. ISSN 1877-0509.CrossRefGoogle Scholar
  5. Bellavista, P., Corradi, A., Fanelli, M., & Foschini, L. (2012). A survey of context data distribution for mobile ubiquitous systems. ACM Computing Surveys (CSUR), 44, 24:1–24:45.CrossRefGoogle Scholar
  6. Berio, G., & Harzallah, M. (2007). Towards an integrating architecture for competence management. Computers in Industry, 58(2), 199–209. doi: 10.1016/j.compind.2006.09.007. ISSN 0166-3615.CrossRefGoogle Scholar
  7. Bettini, C., Brdiczka, O., Henricksen, K., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6, 161–180.CrossRefGoogle Scholar
  8. Brooks, C., Panesar, R., & Greer, J. (2006). Awareness and collaboration in the ihelp courses content management system. Innovative Approaches for Learning and Knowledge Sharing, 4227, 34–44. doi: 10.1007/11876663_5.CrossRefGoogle Scholar
  9. Brunato, M., & Battiti, R. (2005). Statistical learning theory for location fingerprinting in wireless lans. Computer Networks, 47, 825–845.MATHCrossRefGoogle Scholar
  10. Chang, S. S., Wu, S. M., Fang, R. J., & Juang, S. T. (2010). Study on the intermediary effect of core competence: relationship between knowledge worker management strategy and job performance. In Proceedings of the 10th WSEAS international conference on multimedia systems and signal processing (pp. 125–131). Stevens Point, Wisconsin. World Scientific and Engineering Academy and Society (WSEAS).Google Scholar
  11. Chen, S.-M., & Bai, S.-M. (2009). Learning barriers diagnosis based on fuzzy rules for adaptive learning systems. Expert Systems with Applications, 36(8), 11211–11220. doi: 10.1016/j.eswa.2009.02.084. ISSN 0957-4174.CrossRefGoogle Scholar
  12. Chen, L.-H. (2011). Enhancement of student learning performance using personalized diagnosis and remedial learning system. Communication Education, 56 (1), 289–299. doi: 10.1016/j.compedu.2010.07.015. ISSN 0360-1315.Google Scholar
  13. Chou, C.-Y., Chan, T.-W., & Lin, C.-J. (2003). Redefining the learning companion: the past, present, and future of educational agents. Computers & Education, 40(3), 255–269. doi: 10.1016/S0360-1315(02)00130-6. ISSN 0360-1315.CrossRefGoogle Scholar
  14. Ciaramella, A., Cimino, M., Lazzerini, B., & Marcelloni, F. (2010). Using context history to personalize a resource recommender via a genetic algorithm. In 2010 10th international conference on intelligent systems design and applications (ISDA) (pp. 965–970).Google Scholar
  15. Colucci, S., Sciascio, E. D., & Donini, F. M. (2008). A knowledge-based solution for core competence evaluation in human-capital intensive companies. In Proceedings of 8th international conference on knowledge management (pp. 259–266).Google Scholar
  16. Colucci, S., Tinelli, E., Di Sciascio, E., & Donini, F. M. (2011). Automating competence management through non-standard reasoning. Engineering Applications of Artificial Intelligence, 24, 1368–1384.CrossRefGoogle Scholar
  17. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–340.CrossRefGoogle Scholar
  18. Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction, 16, 97–166.CrossRefGoogle Scholar
  19. Dey, A. K., Hightower, J., Lara, E., & Davies, N. (2010). Location-based services. IEEE Pervasive Computing, 9, 11–12.CrossRefGoogle Scholar
  20. Diaz, A., Merino, P., & Rivas, F. J. (2009). Mobile application profiling for connected mobile devices. IEEE Pervasive Computing, 9, 54–61.CrossRefGoogle Scholar
  21. Doherty, A. R., Caprani, N., Conaire, C. O., Kalnikaite, V., Gurrin, C., Smeaton, A. F., & O’Connor, N. E. (2011). Passively recognising human activities through lifelogging. Computers in Human Behavior, 27, 1948–1958.CrossRefGoogle Scholar
  22. Driver, C., & Clarke, S. (2008). An application framework for mobile, context-aware trails. Pervasive and Mobile Computing, 4, 719–736.CrossRefGoogle Scholar
  23. Franco, L. K., Rosa, J. H., Barbosa, J. L. V., Costa, C. A., & Yamin, A. C. (2011). Mucs: a model for ubiquitous commerce support. Electronic Commerce Research and Applications, 10(2), 237–246. doi: 10.1016/j.elerap.2010.08.006. ISSN 1567-4223. Special Issue on Electronic Auctions: Strategies and Methods.CrossRefGoogle Scholar
  24. F0̈ll, S., Herrmann K., & Rothermel, K. (2011b). Precon - expressive context prediction using stochastic model checking. In Hsu, C.-H., Yang, L., Ma, J., & Zhu, C. (Eds.) Ubiquitous Intelligence and Computing, volume 6905 of lecture notes in computer science (pp. 350–364). Berlin: Springer.Google Scholar
  25. Gemmell, J., Bell, G., Lueder, R., Drucker, S., & Wong, C. (2002). Mylifebits: fulfilling the memex vision. In Proceedings of the 10th ACM international conference on multimedia (pp. 235–238). ACM.Google Scholar
  26. Greer, J., McCalla, G., Collins, J., Kumar, V., Meagher, P., & Vassileva, J. (1998). Supporting peer help and collaboration in distributed workplace environments. International Journal of Artificial Intelligence in Education, 9, 159–177.Google Scholar
  27. Hafeez, K., Zhang, Y., & Malak, N. (2002). Core competence for sustainable competitive advantage: a structured methodology for identifying core competence. IEEE Transactions on Engineering Management, 49, 28–35.CrossRefGoogle Scholar
  28. Hightower, J., & Gaetano, B. (2001). Location systems for ubiquitous computing. IEEE Journal, IEEE Press, 34, 57–66.Google Scholar
  29. Hightower, J., LaMarca, A., & Smith, I. (2006). Practical lessons from place lab. IEEE Pervasive Computing, 5, 32–39.CrossRefGoogle Scholar
  30. Hoareau, C., & Satoh, I. (2009). Modeling and processing information for context-aware computing: a survey. New Generation Computing, 27, 177–196.MATHCrossRefGoogle Scholar
  31. Hong, J., Suh, E.-H., Kim, J., & Kim, S. (2009). Context-aware system for proactive personalized service based on context history. Expert Systems with Applications, 36, 7448–7457.CrossRefGoogle Scholar
  32. Iordan, V., Naaji, A., & Cicortas, A. (2008). Deriving ontologies using multi-agent systems. WSEAS Transactions on Computers, 7, 814–826.Google Scholar
  33. Johnson, W. L., & Valente, A (2008). Tactical language and culture training systems: using artificial intelligence to teach foreign languages and cultures. In Proceedings of the 20th national conference on innovative applications of artificial intelligence - volume 3, IAAI’08 (pp. 1632–1639). AAAI Press. ISBN 978-1-57735-368-3.Google Scholar
  34. Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. H., & Tran, L. (2005). Composite capability/preference profiles (cc/pp): structure and vocabularies. Technical report, The World Wide Web Consortium (W3C). http://www.w3.org/TR/CCPP-struct-vocab.
  35. König, I., Voigtmann, C., Klein, B. N., & David, K. (2011). Enhancing alignment based context prediction by using multiple context sources: experiment and analysis. In Proceedings of the 7th international and interdisciplinary conference on modeling and using context (pp. 159–172). Springer-Verlag.Google Scholar
  36. Krittaya, L, & Biswas, G. (2008). Designing learning by teaching agents: the betty’s brain system. International Journal of Artificial Intelligence in Education, 18 (3), 181–208 . ISSN 1560-4292.Google Scholar
  37. Kump, B., Seifert, C., Beham, G., Lindstaedt, S. N., & Ley, T. (2012). Seeing what the system thinks you know: Visualizing evidence in an open learner model. In Proceedings of the 2nd international conference on learning analytics and knowledge, LAK ’12. ISBN 978-1-4503-1111-3. doi: 10.1145/2330601.2330640 (pp. 153–157). New York: ACM.
  38. Leblanc, A., & Abel, M.-H. (2009). Competences management in an organizational learning context. In Proceedings of the international conference on management of emergent digital ecosystems (pp. 353–360). ACM.Google Scholar
  39. Lee, M. L., & Dey, A. K. (2008). Lifelogging memory appliance for people with episodic memory impairment. In Proceedings of the 10th international conference on ubiquitous computing digital ecosystems (pp. 44–53). ACM.Google Scholar
  40. Lee, C.-H., Lee, G.-G., & Leu, Y. (2009). Application of automatically constructed concept map of learning to conceptual diagnosis of e-learning. Expert Systems with Applications, 36(2, Part 1), 1675–1684. doi: 10.1016/j.eswa.2007.11.049. ISSN 0957-4174.CrossRefGoogle Scholar
  41. Levis, D., Barbosa, J. L. V., Pinto, S. C. C. S., & Barbosa, D. N. F. (2008). Automatic improvement of the learner’s profile in ubiquitous learning environments. The Brazilian Journal of Informatics in Education, 16, 29–41.Google Scholar
  42. Ley, T., Ulbrich, A., Scheir, P., Lindstaedt, S. N., Kump, B., & Albert, D. (2008). Modeling competencies for supporting work-integrated learning in knowledge work. Journal of Knowledge Management, 12, 31–47.CrossRefGoogle Scholar
  43. Ley, T., Kump, B., & Gerdenitsch, C. (2010a). Scaffolding self-directed learning with personalized learning goal recommendations. In De Bra, P., Kobsa, A, & Chin, D (Eds.) User modeling, adaptation, and personalization, volume 6075 of lecture notes in computer science. ISBN 978-3-642-13469-2 doi: 10.1007/978-3-642-13470-8_9 (pp. 75–86). Berlin: Springer.
  44. Ley, T., Kump, B., & Albert, D. (2010b). A methodology for eliciting, modelling, and evaluating expert knowledge for an adaptive work-integrated learning system. International Journal of Human Computer Studies, 68(4), 185–208. doi: 10.1016/j.ijhcs.2009.12.001. ISSN 1071-5819.CrossRefGoogle Scholar
  45. Ley, T., & Kump, B. (2013). Which user interactions predict levels of expertise in work-integrated learning? In Hernández-Leo, D, Ley, T, Klamma, R, & Harrer, A (Eds.) Scaling up learning for sustained impact, volume 8095 of lecture notes in computer science. ISBN 978-3-642-40813-7 doi: 10.1007/978-3-642-40814-4_15 (pp. 178–190). Berlin: Springer.
  46. Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22, 1–55.Google Scholar
  47. Lindstaedt, S. N., Beham, G., Kump, B., & Ley, T. (2009). Getting to know your user - unobtrusive user model maintenance within work-integrated learning environments. In Cress, U., Dimitrova, V., & Specht, M. (Eds.) Learning in the synergy of multiple disciplines, volume 5794 of lecture notes in computer science. ISBN 978-3-642-04635-3 (pp. 73–87). Berlin: Springer, doi: 10.1007/978-3-642-04636-0_9, (to appear in print).
  48. Lindstaedt, S., Kump, B., Beham, G., Pammer, V., Ley, T., Dotan, A., & de Hoog, R. (2010). Providing varying degrees of guidance for work-integrated learning. In Wolpers, M., Kirschner, P. A., Scheffel, M., Lindstaedt, S., & Dimitrova, V. (Eds.) Sustaining TEL: from innovation to learning and practice, volume 6383 of lecture notes in computer science. ISBN 978-3-642-16019-6 (pp. 213–228). Berlin: Springer, doi: 10.1007/978-3-642-16020-2_15, (to appear in print).
  49. Malachowski, B. (2011). Competence-based management of knowledge workers in project-oriented organizations. Knowledge Science, Engineering and Management, 7091, 281–292.CrossRefGoogle Scholar
  50. Marangunic, N, & Granic, A (2014). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 1–15. doi: 10.1007/s10209-014-0348-1. ISSN 1615-5289.
  51. Martin, K., & Freeman, R. E. (2004). Some problems with employee monitoring. Journal of Business Ethics, 43, 353–361.CrossRefGoogle Scholar
  52. Mills, J., Platts, K., & Bourne, M. (2003). Competence and resource architectures. International Journal of Operations&Production Management, 23, 977–994.CrossRefGoogle Scholar
  53. Mizoguchi, R, & Bourdeau, J (2000). Using ontological engineering to overcome common ai-ed problems. International Journal of Artificial Intelligence in Education, 11, 107–121.Google Scholar
  54. Oliveira, S., & Gluz, J. C. (2010). Agent-based cognitive model for human resources competence management. In Hussain, A., Aleksander, I., Smith, L. S., Kardec Barros, A., Chrisley, R., Cutsuridis, V., Back, N., Cohen, I.R., Lajtha, A., Lambris, J. D., & Paoletti, R. (Eds.) Brain inspired cognitive systems 2008, volume 657 of advances in experimental medicine and biology. New York : Springer.Google Scholar
  55. PAPI (2010). Draft standard for learning technology. public and private information (papi) for learners (papi learner). Available at: http://metadata-standards.org/Document-library/Meeting-reports/SC32WG2/2002-05-Seoul/WG2-SEL-042_SC36N0175_papi_learner_core_features.pdf Accessed in Sept. 2014.
  56. Padgham, L., & Winikoff, M. (2002). Prometheus: a methodology for developing intelligent agents. In: Proceedings of AOSE (agent-oriented software engineering) (pp. 174–185).Google Scholar
  57. Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems a practical guide. Michael Wooldridge, Liverpool University.Google Scholar
  58. Paquette, G. (2007). An ontology and a software framework for competency modeling and management. Educational Technology & Society, 10, 1–21.Google Scholar
  59. Prahalad, C. K., & Hamel, G. (1990). The core competence of the corporation. Harvard Business Review, 79–91.Google Scholar
  60. Puustjärvi, J., & Puustjärvi, L. A. (2011). The opportunities of cloud computing for managing competences and learning paths in pharmacy. In Proceedings of the 13th international conference on information integration and web-based applications and services (pp. 160–165). ACM.Google Scholar
  61. Rodriguez, A (2006). An intelligent help system to support teachers to author learning sessions in decision-making in network design. PhD thesis, Monreal, P.Q., Canada. AAINR20311.Google Scholar
  62. Rolim, C., Sonntag, N., & Barbosa, J. L. V. (2008). Hls: a model for the development of location-aware applications. IX Workshop em Sistemas Computacionais de Alto Desempenho (WSCAD), 9: 227–234:9.Google Scholar
  63. Saccol, A. Z., Barbosa, J. L. V., Schlemmer, E., & Reinhard, N. (2011). Mobile learning in organizations: lessons learned from two case studies. International journal of information and communication technology education (IJICTE), 7, 11–24.CrossRefGoogle Scholar
  64. Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. Personal Communications IEEE, 8, 10–17.CrossRefGoogle Scholar
  65. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8, 14–23.CrossRefGoogle Scholar
  66. Sellen, A. J., & Whittaker, S. (2010). Beyond total capture: a constructive critique of lifelogging. Communications of the ACM, 53, 70–77.CrossRefGoogle Scholar
  67. Sidney, D., & Art, G. (2013). Autotutor and affective autotutor: learning by talking with cognitively and emotionally intelligent computers that talk back. ACM Transactions Interaction Intelligent Systems, 2(4), 23:1–23:39. doi: 10.1145/2395123.2395128. ISSN 2160-6455.Google Scholar
  68. Sigg, S., Gordon, D., Zengen, G., Beigl, M., Haseloff, S., & David, K. (2012). Investigation of context prediction accuracy for different context abstraction levels. IEEE Transactions on Mobile Computing, 11(6), 1047–1059. doi: 10.1109/TMC.2011.170. ISSN 1536-1233.CrossRefGoogle Scholar
  69. Silva, J., Rosa, J., Barbosa, J., Barbosa, D., & Palazzo, L. (2010). Content distribution in trail-aware environments. Journal of the Brazilian Computer Society, 16, 163–176.CrossRefGoogle Scholar
  70. Smith, A. D., Hall, W., Glaser, H., & Carr, L. A. (2006). Towards truly ubiquitous life annotation. Memories for Life Colloquium, The British Library.Google Scholar
  71. Smith, S. (2008). Who controls the past controls the future - life annotation in principle and practice. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis.Google Scholar
  72. Song, I., Haam, D., Kim, H., & Ontlms, K. M. H. (2010). An ontology-based lifelog management system. In 2010 12th international asia-pacific web conference (APWEB) (pp. 341–343).Google Scholar
  73. Tatar, D., Roschelle, J., Vahey, P., & Penuel, W. R. (2003). Handhelds go to school: Lessons learned. Computer, 36(9), 30–37. doi: 10.1109/MC.2003.1231192. ISSN 0018-9162.CrossRefGoogle Scholar
  74. Tinelli, E., Colucci, S., Giannini, S., Di Sciascio, E., & Donini, F. M. (2012). Large scale skill matching through knowledge compilation. In Proceedings of the 20th international conference on foundations of intelligent systems, ISMIS’12. ISBN 978-3-642-34623-1. doi: 10.1007/978-3-642-34624-8_23 (pp. 192–201). Berlin: Springer-Verlag.
  75. Vaughan-Nichols, S. J. (2009). Will mobile computing’s future be location, location, and location? Computer, 42, 14–17.CrossRefGoogle Scholar
  76. Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., & Duval, E. (2012). Context-aware recommender systems for learning: a survey and future challenges. IEEE IEEE Transactions on Learning Technologies, 5(4), 318–335. doi: 10.1109/TLT.2012.11. ISSN 1939-1382.CrossRefGoogle Scholar
  77. Vianna, H. D., & Barbosa, J. L. V. (2014). A model for ubiquitous care of noncommunicable diseases. IEEE Journal of Biomedical and Health Informatics, 18(5), 1597–1606. doi: 10.1109/JBHI.2013.2292860. ISSN 2168-2194.CrossRefGoogle Scholar
  78. Voigtmann, C., Lau, S., & David, K. (2011). An approach to collaborative context prediction. In 2011 IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops) (pp. 438–443).Google Scholar
  79. Wagner, A., Barbosa, J. L. V., & Barbosa, D. N. F. (2014). A model for profile management applied to ubiquitous learning environments. Expert Systems Application, 41(4), 2023–2034. doi: 10.1016/j.eswa.2013.08.098. ISSN 0957-4174.CrossRefGoogle Scholar
  80. Yoon, C., & Kim, S. (2007). Convenience and tam in a ubiquitous computing environment: The case of wireless lan. Electronic Commerce Research and Applications, 6, 102–112.CrossRefGoogle Scholar

Copyright information

© International Artificial Intelligence in Education Society 2015

Authors and Affiliations

  • João H. Rosa
    • 1
  • Jorge L. V. Barbosa
    • 1
  • Marcos Kich
    • 1
  • Lucas Brito
    • 1
  1. 1.Universidade do Vale do Rio dos SinosSão LeopoldoBrazil

Personalised recommendations